Algebraic soft-decision decoding of Reed-Solomon codes
暂无分享,去创建一个
[1] Elwyn R. Berlekamp,et al. On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.
[2] Venkatesan Guruswami,et al. List decoding algorithms for certain concatenated codes , 2000, STOC '00.
[3] Bruno O. Shubert,et al. Random variables and stochastic processes , 1979 .
[4] Kees Schouhamer-Immink. Coding Techniques for Digital Recorders , 1991 .
[5] Xin-Wen Wu,et al. Efficient root-finding algorithm with application to list decoding of Algebraic-Geometric codes , 2001, IEEE Trans. Inf. Theory.
[6] Venkatesan Guruswami,et al. Improved decoding of Reed-Solomon and algebraic-geometric codes , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[7] Frank R. Kschischang,et al. A VLSI architecture for interpolation in soft-decision list decoding of Reed-Solomon codes , 2002, IEEE Workshop on Signal Processing Systems.
[8] Ulrich K. Sorger. A new Reed-Solomon code decoding algorithm based on Newton's interpolation , 1993, IEEE Trans. Inf. Theory.
[9] Daniel Augot,et al. A Hensel lifting to replace factorization in list-decoding of algebraic-geometric and Reed-Solomon codes , 2000, IEEE Trans. Inf. Theory.
[10] David Haccoun,et al. Coding for Satellite Communication , 1987, IEEE J. Sel. Areas Commun..
[11] R. Kotter. Fast generalized minimum-distance decoding of algebraic-geometry and Reed-Solomon codes , 1996 .
[12] Madhu Sudan,et al. Decoding of Reed Solomon Codes beyond the Error-Correction Bound , 1997, J. Complex..
[13] John G. Proakis,et al. Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..
[14] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[15] G. David Forney,et al. Generalized minimum distance decoding , 1966, IEEE Trans. Inf. Theory.
[16] R. McEliece,et al. Reed-Solomon Codes and the Exploration of the Solar System , 1994 .
[17] Venkatesan Guruswami,et al. Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.
[18] Amin Shokrollahi,et al. A displacement approach to efficient decoding of algebraic-geometric codes , 1999, STOC '99.
[19] Elwyn R. Berlekamp,et al. Bounded distance+1 soft-decision Reed-Solomon decoding , 1996, IEEE Trans. Inf. Theory.
[20] S. Pope,et al. The application of error control to communications , 1987, IEEE Communications Magazine.
[21] Alexander Vardy,et al. Bit-level soft-decision decoding of Reed-Solomon codes , 1991, IEEE Trans. Commun..
[22] R. Roth,et al. Efficient decoding of Reed-Solomon codes beyond half the minimum distance , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).
[23] Branka Vucetic,et al. Soft decision decoding of Reed-Solomon codes , 2002, IEEE Trans. Commun..
[24] John Cocke,et al. Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.
[25] Alexander Vardy,et al. Algorithmic complexity in coding theory and the minimum distance problem , 1997, STOC '97.
[26] Alain Poli,et al. Error correcting codes - theory and applications , 1992 .
[27] X. Jin. Factor graphs and the Sum-Product Algorithm , 2002 .
[28] Tom Høholdt,et al. Decoding Reed-Solomon Codes Beyond Half the Minimum Distance , 2000 .