Algebraic soft-decision decoding of Reed-Solomon codes

A polynomial-time soft-decision decoding algorithm for Reed-Solomon codes is developed. This list-decoding algorithm is algebraic in nature and builds upon the interpolation procedure proposed by Guruswami and Sudan(see ibid., vol.45, p.1757-67, Sept. 1999) for hard-decision decoding. Algebraic soft-decision decoding is achieved by means of converting the probabilistic reliability information into a set of interpolation points, along with their multiplicities. The proposed conversion procedure is shown to be asymptotically optimal for a certain probabilistic model. The resulting soft-decoding algorithm significantly outperforms both the Guruswami-Sudan decoding and the generalized minimum distance (GMD) decoding of Reed-Solomon codes, while maintaining a complexity that is polynomial in the length of the code. Asymptotic analysis for alarge number of interpolation points is presented, leading to a geo- metric characterization of the decoding regions of the proposed algorithm. It is then shown that the asymptotic performance can be approached as closely as desired with a list size that does not depend on the length of the code.

[1]  Elwyn R. Berlekamp,et al.  On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[2]  Venkatesan Guruswami,et al.  List decoding algorithms for certain concatenated codes , 2000, STOC '00.

[3]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[4]  Kees Schouhamer-Immink Coding Techniques for Digital Recorders , 1991 .

[5]  Xin-Wen Wu,et al.  Efficient root-finding algorithm with application to list decoding of Algebraic-Geometric codes , 2001, IEEE Trans. Inf. Theory.

[6]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometric codes , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[7]  Frank R. Kschischang,et al.  A VLSI architecture for interpolation in soft-decision list decoding of Reed-Solomon codes , 2002, IEEE Workshop on Signal Processing Systems.

[8]  Ulrich K. Sorger A new Reed-Solomon code decoding algorithm based on Newton's interpolation , 1993, IEEE Trans. Inf. Theory.

[9]  Daniel Augot,et al.  A Hensel lifting to replace factorization in list-decoding of algebraic-geometric and Reed-Solomon codes , 2000, IEEE Trans. Inf. Theory.

[10]  David Haccoun,et al.  Coding for Satellite Communication , 1987, IEEE J. Sel. Areas Commun..

[11]  R. Kotter Fast generalized minimum-distance decoding of algebraic-geometry and Reed-Solomon codes , 1996 .

[12]  Madhu Sudan,et al.  Decoding of Reed Solomon Codes beyond the Error-Correction Bound , 1997, J. Complex..

[13]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[14]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[15]  G. David Forney,et al.  Generalized minimum distance decoding , 1966, IEEE Trans. Inf. Theory.

[16]  R. McEliece,et al.  Reed-Solomon Codes and the Exploration of the Solar System , 1994 .

[17]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.

[18]  Amin Shokrollahi,et al.  A displacement approach to efficient decoding of algebraic-geometric codes , 1999, STOC '99.

[19]  Elwyn R. Berlekamp,et al.  Bounded distance+1 soft-decision Reed-Solomon decoding , 1996, IEEE Trans. Inf. Theory.

[20]  S. Pope,et al.  The application of error control to communications , 1987, IEEE Communications Magazine.

[21]  Alexander Vardy,et al.  Bit-level soft-decision decoding of Reed-Solomon codes , 1991, IEEE Trans. Commun..

[22]  R. Roth,et al.  Efficient decoding of Reed-Solomon codes beyond half the minimum distance , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[23]  Branka Vucetic,et al.  Soft decision decoding of Reed-Solomon codes , 2002, IEEE Trans. Commun..

[24]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[25]  Alexander Vardy,et al.  Algorithmic complexity in coding theory and the minimum distance problem , 1997, STOC '97.

[26]  Alain Poli,et al.  Error correcting codes - theory and applications , 1992 .

[27]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[28]  Tom Høholdt,et al.  Decoding Reed-Solomon Codes Beyond Half the Minimum Distance , 2000 .