Robust Tube-Based MPC with Piecewise Affine Control Laws

This paper presents a tube-based model predictive control (MPC) algorithm with piecewise affine control laws for discrete-time linear systems in the presence of bounded disturbances. By solving the standard multiparametric quadratic programming (mp-QP), the explicit piecewise affine control laws for tube-based MPC are obtained. Each control law is piecewise affine with respect to the corresponding region (one of the partitions of the feasible set). Due to the fact that the above-mentioned procedures are totally offline, the online computation time is short enough for stabilizing those systems with fast dynamics. In this paper, all the involved constraint sets are assumed to be polytopes. An illustrative example is utilized to verify the feasibility and efficiency of the proposed algorithm.

[1]  K. T. Tan,et al.  Linear systems with state and control constraints: the theory and application of maximal output admissible sets , 1991 .

[2]  Anders Rantzer,et al.  Computation of piecewise quadratic Lyapunov functions for hybrid systems , 1997, 1997 European Control Conference (ECC).

[3]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[4]  E. Kerrigan Robust Constraint Satisfaction: Invariant Sets and Predictive Control , 2000 .

[5]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[6]  David Q. Mayne,et al.  Robustifying model predictive control of constrained linear systems , 2001 .

[7]  T. Johansen,et al.  COMPLEXITY REDUCTION IN EXPLICIT LINEAR MODEL PREDICTIVE CONTROL , 2002 .

[8]  Manfred Morari,et al.  Analysis of discrete-time piecewise affine and hybrid systems , 2002, Autom..

[9]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[10]  A. Bemporad,et al.  Suboptimal Explicit Receding Horizon Control via Approximate Multiparametric Quadratic Programming , 2003 .

[11]  Alberto Bemporad,et al.  An algorithm for multi-parametric quadratic programming and explicit MPC solutions , 2003, Autom..

[12]  Alberto Bemporad,et al.  Evaluation of piecewise affine control via binary search tree , 2003, Autom..

[13]  M. Morari,et al.  Geometric Algorithm for Multiparametric Linear Programming , 2003 .

[14]  Mato Baotic,et al.  Multi-Parametric Toolbox (MPT) , 2004, HSCC.

[15]  David Q. Mayne,et al.  Invariant approximations of the minimal robust positively Invariant set , 2005, IEEE Transactions on Automatic Control.

[16]  W. Kwon,et al.  Receding Horizon Control: Model Predictive Control for State Models , 2005 .

[17]  David Q. Mayne,et al.  Robust model predictive control of constrained linear systems with bounded disturbances , 2005, Autom..

[18]  Colin Neil Jones,et al.  On the facet-to-facet property of solutions to convex parametric quadratic programs , 2006, Autom..

[19]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[20]  Yang Wang,et al.  Efficient point location via subdivision walking with application to explicit MPC , 2007, 2007 European Control Conference (ECC).

[21]  Manfred Morari,et al.  Multiparametric Linear Programming with Applications to Control , 2007, Eur. J. Control.

[22]  C. N. Jones,et al.  Multiparametric linear programming for control , 2008, 2008 27th Chinese Control Conference.

[23]  Efstratios N. Pistikopoulos,et al.  Perspectives in Multiparametric Programming and Explicit Model Predictive Control , 2009 .

[24]  Mato Baotic,et al.  On the complexity of explicit MPC laws , 2009, 2009 European Control Conference (ECC).

[25]  Xiaoyan Ma,et al.  Analytical expression of explicit MPC solution via lattice piecewise-affine function , 2009, Autom..

[26]  Manfred Morari,et al.  Polytopic Approximation of Explicit Model Predictive Controllers , 2010, IEEE Transactions on Automatic Control.

[27]  Milan Hladík,et al.  Multiparametric linear programming: Support set and optimal partition invariancy , 2010, Eur. J. Oper. Res..

[28]  Basil Kouvaritakis,et al.  Stochastic tubes in model predictive control with probabilistic constraints , 2010, Proceedings of the 2010 American Control Conference.

[29]  Eduardo F. Camacho,et al.  Robust tube-based MPC for tracking of constrained linear systems with additive disturbances , 2010 .

[30]  Tor Arne Johansen,et al.  Using hash tables to manage the time-storage complexity in a point location problem: Application to explicit model predictive control , 2011, Autom..

[31]  David Q. Mayne,et al.  Tube‐based robust nonlinear model predictive control , 2011 .

[32]  Graham C. Goodwin,et al.  Predictive Metamorphic Control , 2011, 2011 8th Asian Control Conference (ASCC).

[33]  Arun Gupta,et al.  A novel approach to multiparametric quadratic programming , 2011, Autom..

[34]  Basil Kouvaritakis,et al.  Robust Tubes in Nonlinear Model Predictive Control , 2010, IEEE Transactions on Automatic Control.

[35]  F. Allgöwer,et al.  Tube MPC scheme based on robust control invariant set with application to Lipschitz nonlinear systems , 2011, IEEE Conference on Decision and Control and European Control Conference.

[36]  Stephen P. Boyd,et al.  Receding Horizon Control , 2011, IEEE Control Systems.

[37]  Marcello Farina,et al.  Tube-based robust sampled-data MPC for linear continuous-time systems , 2012, Autom..

[38]  Miroslav Fikar,et al.  Clipping-Based Complexity Reduction in Explicit MPC , 2012, IEEE Transactions on Automatic Control.

[39]  Rolf Findeisen,et al.  Homothetic tube model predictive control , 2012, Autom..