The Hegselmann-Krause Dynamics for the Continuous-Agent Model and a Regular Opinion Function Do Not Always Lead to Consensus

We present an example of a regular opinion function which, as it evolves in accordance with the discrete-time Hegselmann-Krause bounded confidence dynamics, always retains opinions which are separated by more than two. This confirms a conjecture of Blondel, Hendrickx and Tsitsiklis.

[1]  Mark Braverman,et al.  On the convergence of the Hegselmann-Krause system , 2012, ITCS '13.

[2]  Peter Hegarty,et al.  The Hegselmann-Krause dynamics for equally spaced agents , 2014, ArXiv.

[3]  F. Bullo,et al.  On Synchronous Robotic Networks—Part I: Models, Tasks, and Complexity , 2005, IEEE Transactions on Automatic Control.

[4]  Guillaume Deffuant,et al.  Mixing beliefs among interacting agents , 2000, Adv. Complex Syst..

[5]  John N. Tsitsiklis,et al.  On the 2R conjecture for multi-agent systems , 2007, 2007 European Control Conference (ECC).

[6]  Emilio Frazzoli,et al.  On synchronous robotic networks Part II: Time complexity of rendezvous and deployment algorithms , 2007, Proceedings of the 44th IEEE Conference on Decision and Control.

[7]  John N. Tsitsiklis,et al.  On Krause's Multi-Agent Consensus Model With State-Dependent Connectivity , 2008, IEEE Transactions on Automatic Control.

[8]  Bernard Chazelle,et al.  The Total s-Energy of a Multiagent System , 2010, SIAM J. Control. Optim..

[9]  Rainer Hegselmann,et al.  Opinion dynamics and bounded confidence: models, analysis and simulation , 2002, J. Artif. Soc. Soc. Simul..

[10]  S. Fortunato On The Consensus Threshold For The Opinion Dynamics Of Krause–Hegselmann , 2004, cond-mat/0408648.

[11]  Peter Hegarty,et al.  A Quadratic Lower Bound for the Convergence Rate in the One-Dimensional Hegselmann–Krause Bounded Confidence Dynamics , 2014, Discret. Comput. Geom..

[12]  Behrouz Touri,et al.  On convergence rate of scalar Hegselmann-Krause dynamics , 2012, 2013 American Control Conference.