Evidence for neural encoding of Bayesian surprise in human somatosensation

Accumulating empirical evidence suggests a role of Bayesian inference and learning for shaping neural responses in auditory and visual perception. However, its relevance for somatosensory processing is unclear. In the present study we test the hypothesis that cortical somatosensory processing exhibits dynamics that are consistent with Bayesian accounts of brain function. Specifically, we investigate the cortical encoding of Bayesian surprise, a recently proposed marker of Bayesian perceptual learning, using EEG data recorded from 15 subjects. Capitalizing on a somatosensory mismatch roving paradigm, we performed computational single-trial modeling of evoked somatosensory potentials for the entire peri-stimulus time period in source space. By means of Bayesian model selection, we find that, at 140 ms post-stimulus onset, secondary somatosensory cortex represents Bayesian surprise rather than stimulus change, which is the conventional marker of EEG mismatch responses. In contrast, at 250 ms, right inferior frontal cortex indexes stimulus change. Finally, at 360 ms, our analyses indicate additional perceptual learning attributable to medial cingulate cortex. In summary, the present study provides novel evidence for anatomical-temporal/functional segregation in human somatosensory processing that is consistent with the Bayesian brain hypothesis.

[1]  A. Borst Seeing smells: imaging olfactory learning in bees , 1999, Nature Neuroscience.

[2]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Theory , 2002, NeuroImage.

[3]  I. Nelken,et al.  Modeling the auditory scene: predictive regularity representations and perceptual objects , 2009, Trends in Cognitive Sciences.

[4]  Karl J. Friston,et al.  Multiple sparse priors for the M/EEG inverse problem , 2008, NeuroImage.

[5]  E. Schröger,et al.  Two separate mechanisms underlie auditory change detection and involuntary control of attention , 2006, Brain Research.

[6]  Karl J. Friston Learning and inference in the brain , 2003, Neural Networks.

[7]  J. Craig Henry,et al.  Creating Coordination in the Cerebellum: Progress in Brain Research, Volume 148 , 2006, Neurology.

[8]  S. G. Boyd,et al.  Effects of stimulus frequency and duration on somatosensory discrimination responses , 2007, Experimental Brain Research.

[9]  H. Dinse,et al.  Functional Imaging of Perceptual Learning in Human Primary and Secondary Somatosensory Cortex , 2003, Neuron.

[10]  W. Penny,et al.  Time Scales of Representation in the Human Brain: Weighing Past Information to Predict Future Events , 2011, Front. Hum. Neurosci..

[11]  Mark W. Woolrich,et al.  Bayesian inference in FMRI , 2012, NeuroImage.

[12]  H. Yabe,et al.  Somatosensory automatic responses to deviant stimuli. , 1998, Brain research. Cognitive brain research.

[13]  Risto Näätänen,et al.  Somatosensory mismatch negativity: a new clinical tool for developmental neurological research? , 2009, Developmental medicine and child neurology.

[14]  A. Mouraux,et al.  Stimulus novelty, and not neural refractoriness, explains the repetition suppression of laser-evoked potentials. , 2010, Journal of neurophysiology.

[15]  K. Alho,et al.  Separate Time Behaviors of the Temporal and Frontal Mismatch Negativity Sources , 2000, NeuroImage.

[16]  Karl J. Friston,et al.  Extra-classical receptive field effects measured in striate cortex with fMRI , 2007, NeuroImage.

[17]  G. Curio,et al.  Dipole source localization and fMRI of simultaneously recorded data applied to somatosensory categorization , 2003, NeuroImage.

[18]  V. Menon Large-scale brain networks and psychopathology: a unifying triple network model , 2011, Trends in Cognitive Sciences.

[19]  S. Debener,et al.  Trial-by-Trial Fluctuations in the Event-Related Electroencephalogram Reflect Dynamic Changes in the Degree of Surprise , 2008, The Journal of Neuroscience.

[20]  C. Gilbert,et al.  The Neural Basis of Perceptual Learning , 2001, Neuron.

[21]  Francisco Aboitiz,et al.  Neural Mechanisms of Human Perceptual Learning: Electrophysiological Evidence for a Two-Stage Process , 2011, PloS one.

[22]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[23]  A. Mouraux,et al.  A review of the evidence against the “first come first served” hypothesis. Comment on Truini et al. [Pain 2007;131:43–7] , 2008, PAIN.

[24]  Pierre Baldi,et al.  Of bits and wows: A Bayesian theory of surprise with applications to attention , 2010, Neural Networks.

[25]  D. Linden The P300: Where in the Brain Is It Produced and What Does It Tell Us? , 2005, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[26]  T. Baldeweg,et al.  Mismatch negativity potentials and cognitive impairment in schizophrenia , 2004, Schizophrenia Research.

[27]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[28]  I. J. Myung,et al.  When a good fit can be bad , 2002, Trends in Cognitive Sciences.

[29]  R. Kakigi,et al.  Objective examination for two-point stimulation using a somatosensory oddball paradigm: An MEG study , 2007, Clinical Neurophysiology.

[30]  Raymond J. Dolan,et al.  Information theory, novelty and hippocampal responses: unpredicted or unpredictable? , 2005, Neural Networks.

[31]  M. Rushworth,et al.  Model-based analyses: Promises, pitfalls, and example applications to the study of cognitive control , 2011, Quarterly journal of experimental psychology.

[32]  Karl J. Friston,et al.  Encoding uncertainty in the hippocampus , 2006, Neural Networks.

[33]  M. Murray,et al.  EEG source imaging , 2004, Clinical Neurophysiology.

[34]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Applications , 2002, NeuroImage.

[35]  P Berg,et al.  A multiple source approach to the correction of eye artifacts. , 1994, Electroencephalography and clinical neurophysiology.

[36]  A. Yuille,et al.  Object perception as Bayesian inference. , 2004, Annual review of psychology.

[37]  R. Näätänen,et al.  Early selective-attention effect on evoked potential reinterpreted. , 1978, Acta psychologica.

[38]  M. Fuchs,et al.  Linear and nonlinear current density reconstructions. , 1999, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[39]  Karl J. Friston,et al.  Statistical parametric mapping for event-related potentials: I. Generic considerations , 2004, NeuroImage.

[40]  K. Reinikainen,et al.  Rate effect and mismatch responses in the somatosensory system: ERP-recordings in humans , 1997, Biological Psychology.

[41]  William D. Penny,et al.  Comparing Dynamic Causal Models using AIC, BIC and Free Energy , 2012, NeuroImage.

[42]  Teemu Rinne,et al.  Superior temporal and inferior frontal cortices are activated by infrequent sound duration decrements: an fMRI study , 2005, NeuroImage.

[43]  Zhe Qu,et al.  Neural substrates of visual perceptual learning of simple and complex stimuli , 2005, Clinical Neurophysiology.

[44]  R. Kakigi,et al.  The effect of stimulus probability on the somatosensory mismatch field , 2007, Experimental Brain Research.

[45]  J. Polich Updating P300: An integrative theory of P3a and P3b , 2007, Clinical Neurophysiology.

[46]  Karl J. Friston,et al.  Comparing dynamic causal models , 2004, NeuroImage.

[47]  Karl J. Friston,et al.  Variational free energy and the Laplace approximation , 2007, NeuroImage.

[48]  S Micheloyannis,et al.  Generators for human P300 elicited by somatosensory stimuli using multiple dipole source analysis , 1996, Neuroscience.

[49]  Karl J. Friston,et al.  The mismatch negativity: A review of underlying mechanisms , 2009, Clinical Neurophysiology.

[50]  Karl J. Friston,et al.  Electromagnetic source reconstruction for group studies , 2008, NeuroImage.

[51]  Raymond J. Dolan,et al.  Computational and dynamic models in neuroimaging , 2010, NeuroImage.

[52]  I. Winkler,et al.  Auditory processing that leads to conscious perception: a unique window to central auditory processing opened by the mismatch negativity and related responses. , 2011, Psychophysiology.

[53]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[54]  O. Witte,et al.  Task requirements change signal strength of the primary somatosensory M50: Oddball vs. one-back tasks. , 2011, Psychophysiology.

[55]  R. Romo,et al.  Correlated Neuronal Discharges that Increase Coding Efficiency during Perceptual Discrimination , 2003, Neuron.

[56]  S. G. Boyd,et al.  Somatosensory discrimination: An intracranial event-related potential study of children with refractory epilepsy , 2010, Brain Research.

[57]  D. Mumford On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[58]  Karl J. Friston,et al.  A Hierarchy of Time-Scales and the Brain , 2008, PLoS Comput. Biol..

[59]  Domenico Restuccia,et al.  Cerebellar damage impairs detection of somatosensory input changes. A somatosensory mismatch-negativity study. , 2006, Brain : a journal of neurology.

[60]  D. Knill,et al.  The Bayesian brain: the role of uncertainty in neural coding and computation , 2004, Trends in Neurosciences.

[61]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[62]  Rajesh P. N. Rao,et al.  Bayesian brain : probabilistic approaches to neural coding , 2006 .

[63]  D Mumford,et al.  On the computational architecture of the neocortex. II. The role of cortico-cortical loops. , 1992, Biological cybernetics.

[64]  Karl J. Friston,et al.  Dynamic causal modelling of evoked potentials: A reproducibility study , 2007, NeuroImage.

[65]  Hiroki Nakata,et al.  Passive enhancement of the somatosensory P100 and N140 in an active attention task using deviant alone condition , 2004, Clinical Neurophysiology.

[66]  V. Menon,et al.  Saliency, switching, attention and control: a network model of insula function , 2010, Brain Structure and Function.

[67]  Karl J. Friston,et al.  Repetition suppression and plasticity in the human brain , 2009, NeuroImage.

[68]  Pierre Baldi,et al.  Bayesian surprise attracts human attention , 2005, Vision Research.

[69]  Trevor B. Penney,et al.  On the functional role of temporal and frontal cortex activation in passive detection of auditory deviance , 2008, NeuroImage.

[70]  Rolf Zeller,et al.  Developmental biology: First come, first served , 2002, Nature.

[71]  Vladimir Litvak,et al.  Artifact correction and source analysis of early electroencephalographic responses evoked by transcranial magnetic stimulation over primary motor cortex , 2007, NeuroImage.

[72]  D. Restuccia,et al.  Somatosensory mismatch negativity in healthy children , 2009, Developmental medicine and child neurology.

[73]  Karl J. Friston,et al.  Dynamic Causal Modeling of the Response to Frequency Deviants , 2009, Journal of neurophysiology.

[74]  Karl J. Friston,et al.  EEG and MEG Data Analysis in SPM8 , 2011, Comput. Intell. Neurosci..

[75]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .

[76]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[77]  Karl J. Friston,et al.  Variational Bayesian inversion of the equivalent current dipole model in EEG/MEG , 2008, NeuroImage.

[78]  K. Worsley,et al.  Local Maxima and the Expected Euler Characteristic of Excursion Sets of χ 2, F and t Fields , 1994, Advances in Applied Probability.

[79]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.