Automated synaptic connectivity inference for volume electron microscopy

Teravoxel volume electron microscopy data sets from neural tissue can now be acquired in weeks, but data analysis requires years of manual labor. We developed the SyConn framework, which uses deep convolutional neural networks and random forest classifiers to infer a richly annotated synaptic connectivity matrix from manual neurite skeleton reconstructions by automatically identifying mitochondria, synapses and their types, axons, dendrites, spines, myelin, somata and cell types. We tested our approach on serial block-face electron microscopy data sets from zebrafish, mouse and zebra finch, and computed the synaptic wiring of songbird basal ganglia. We found that, for example, basal-ganglia cell types with high firing rates in vivo had higher densities of mitochondria and vesicles and that synapse sizes and quantities scaled systematically, depending on the innervated postsynaptic cell types.

[1]  J. Brontë Gatenby,et al.  MATURATION OF RAT MAST CELLS , 1966, The Journal of Cell Biology.

[2]  Gray Eg Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study , 1959 .

[3]  E. Gray,et al.  Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. , 1959, Journal of anatomy.

[4]  T. Reese,et al.  The fine structure of nerve endings in the nucleus of the trapezoid body and the ventral cochlear nucleus. , 1966, The American journal of anatomy.

[5]  M. Colonnier Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. , 1968, Brain research.

[6]  G. Palm,et al.  Density of neurons and synapses in the cerebral cortex of the mouse , 1989, The Journal of comparative neurology.

[7]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[8]  S. Palay,et al.  The Fine Structure of the Nervous System: Neurons and Their Supporting Cells , 1991 .

[9]  B. D. Bennett,et al.  Synaptic input and output of parvalbumin-immunoreactive neurons in the neostriatum of the rat , 1994, Neuroscience.

[10]  Charles J. Wilson,et al.  Surround inhibition among projection neurons is weak or nonexistent in the rat neostriatum. , 1994, Journal of neurophysiology.

[11]  J. Tepper,et al.  Inhibitory control of neostriatal projection neurons by GABAergic interneurons , 1999, Nature Neuroscience.

[12]  T. Sejnowski,et al.  A universal scaling law between gray matter and white matter of cerebral cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  M. Farries,et al.  A Telencephalic Nucleus Essential for Song Learning Contains Neurons with Physiological Characteristics of Both Striatum and Globus Pallidus , 2002, The Journal of Neuroscience.

[14]  A. Doupe,et al.  Is the songbird Area X striatal, pallidal, or both? an anatomical study , 2004, The Journal of comparative neurology.

[15]  S. Bottjer,et al.  An immunohistochemical and pathway tracing study of the striatopallidal organization of area X in the male zebra finch , 2004, The Journal of comparative neurology.

[16]  M. Farries,et al.  Evidence for “direct” and “indirect” pathways through the song system basal ganglia , 2005, The Journal of comparative neurology.

[17]  S. Herculano‐Houzel,et al.  Cellular scaling rules for rodent brains , 2006, Proceedings of the National Academy of Sciences.

[18]  D. Perkel,et al.  Millisecond Timescale Disinhibition Mediates Fast Information Transmission through an Avian Basal Ganglia Loop , 2009, The Journal of Neuroscience.

[19]  Michale S Fee,et al.  Singing-related neural activity distinguishes four classes of putative striatal neurons in the songbird basal ganglia. , 2010, Journal of neurophysiology.

[20]  Eva A Naumann,et al.  Monitoring Neural Activity with Bioluminescence during Natural Behavior , 2010, Nature Neuroscience.

[21]  H. Sebastian Seung,et al.  Boundary Learning by Optimization with Topological Constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  Hagai Bergman,et al.  Singing-Related Neural Activity Distinguishes Two Putative Pallidal Cell Types in the Songbird Basal Ganglia: Comparison to the Primate Internal and External Pallidal Segments , 2010, The Journal of Neuroscience.

[23]  Joseph F. Murray,et al.  Convolutional Networks Can Learn to Generate Affinity Graphs for Image Segmentation , 2010, Neural Computation.

[24]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[25]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[26]  Moritz Helmstaedter,et al.  High-accuracy neurite reconstruction for high-throughput neuroanatomy , 2011, Nature Neuroscience.

[27]  Fred A. Hamprecht,et al.  Automated Detection and Segmentation of Synaptic Contacts in Nearly Isotropic Serial Electron Microscopy Images , 2011, PloS one.

[28]  Davi D Bock,et al.  Volume electron microscopy for neuronal circuit reconstruction , 2012, Current Opinion in Neurobiology.

[29]  Kevin L. Briggman,et al.  Structural neurobiology: missing link to a mechanistic understanding of neural computation , 2012, Nature Reviews Neuroscience.

[30]  Philipp J. Keller,et al.  Whole-brain functional imaging at cellular resolution using light-sheet microscopy , 2013, Nature Methods.

[31]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[32]  Luca Maria Gambardella,et al.  Fast image scanning with deep max-pooling convolutional neural networks , 2013, 2013 IEEE International Conference on Image Processing.

[33]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[34]  John N. J. Reynolds,et al.  Synaptic connectivity between rat striatal spiny projection neurons in vivo: Unexpected multiple somatic innervation in the context of overall sparse proximal connectivity , 2013 .

[35]  Pascal Fua,et al.  Learning Context Cues for Synapse Segmentation , 2013, IEEE Transactions on Medical Imaging.

[36]  Srinivas C. Turaga,et al.  Space-time wiring specificity supports direction selectivity in the retina , 2014, Nature.

[37]  Gary B. Huang,et al.  Identifying Synapses Using Deep and Wide Multiscale Recursive Networks , 2014, ArXiv.

[38]  Toufiq Parag,et al.  Annotating Synapses in Large EM Datasets , 2014, ArXiv.

[39]  Ting Zhao,et al.  Automatic Neuron Type Identification by Neurite Localization in the Drosophila Medulla , 2014, ArXiv.

[40]  Mark H. Ellisman,et al.  A workflow for the automatic segmentation of organelles in electron microscopy image stacks , 2014, Front. Neuroanat..

[41]  Fred A. Hamprecht,et al.  Automated Detection of Synapses in Serial Section Transmission Electron Microscopy Image Stacks , 2014, PloS one.

[42]  W. Denk,et al.  High-resolution whole-brain staining for electron microscopic circuit reconstruction , 2015, Nature Methods.

[43]  Gregory D. Hager,et al.  VESICLE: Volumetric Evaluation of Synaptic Inferfaces using Computer Vision at Large Scale , 2014, BMVC.

[44]  Javier DeFelipe,et al.  A Fast Method for the Segmentation of Synaptic Junctions and Mitochondria in Serial Electron Microscopic Images of the Brain , 2016, Neuroinformatics.

[45]  Kevin L. Briggman,et al.  Extracellular space preservation aids the connectomic analysis of neural circuits , 2015, eLife.

[46]  William R. Gray Roncal,et al.  Saturated Reconstruction of a Volume of Neocortex , 2015, Cell.

[47]  Konrad Kording,et al.  Automatic discovery of cell types and microcircuitry from neural connectomics , 2014, eLife.

[48]  Moritz Helmstaedter,et al.  SegEM: Efficient Image Analysis for High-Resolution Connectomics , 2015, Neuron.

[49]  Louis K. Scheffer,et al.  Synaptic circuits and their variations within different columns in the visual system of Drosophila , 2015, Proceedings of the National Academy of Sciences.

[50]  A. Wanner,et al.  Dense EM-based reconstruction of the interglomerular projectome in the zebrafish olfactory bulb , 2016, Nature Neuroscience.

[51]  R. Mooney,et al.  Focal expression of mutant huntingtin in the songbird basal ganglia disrupts cortico-basal ganglia networks and vocal sequences , 2016, Proceedings of the National Academy of Sciences.

[52]  Louis K. Scheffer,et al.  Fully-Automatic Synapse Prediction and Validation on a Large Data Set , 2016, Front. Neural Circuits.

[53]  Martin Hirzel,et al.  Machine learning in Python with no strings attached , 2019, MAPL@PLDI.