MULTICLASS OBJECT RECOGNITION USING CLASS-CONDITIONAL INDEPENDENT COMPONENT ANALYSIS

A new modeling technique, based on independent component analysis (ICA), is proposed to represent and recognize high-dimensional samples from a large set of classes. The model is constructed via density estimation techniques, and recognition is performed in the Bayesian decision framework. We show that the technique can be successfully used for automatic object identification in environments where a visual observer is faced with a classification problem in high-dimensional spaces with a large number of classes. A first experiment illustrates that classification using an ICA representation is a technique that, even in low dimensions, performs comparably to standard classification techniques. The second experiment tests the ICA classification model on high-dimensional data. Recognition was performed using local color histograms of images corresponding to 400 different objects. It is also shown how our approach outperforms other techniques commonly used in the context of appearance-based recognition.

[1]  Patrick Haffner,et al.  Support vector machines for histogram-based image classification , 1999, IEEE Trans. Neural Networks.

[2]  R. Fisher The Advanced Theory of Statistics , 1943, Nature.

[3]  Alex Pentland,et al.  Probabilistic object recognition and localization , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[4]  Rachid Deriche,et al.  Matching color uncalibrated images using differential invariants , 2000, Image Vis. Comput..

[5]  Brian V. Funt,et al.  Color Angular Indexing , 1996, ECCV.

[6]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources , 1999, Neural Computation.

[7]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[8]  Leonidas J. Guibas,et al.  A metric for distributions with applications to image databases , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[9]  James L. Crowley,et al.  Visual Recognition Using Local Appearance , 1998, ECCV.

[10]  Brian V. Funt,et al.  Color Constant Color Indexing , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Jiri Matas,et al.  On representation and matching of multi-coloured objects , 1995, Proceedings of IEEE International Conference on Computer Vision.

[12]  Rish,et al.  An analysis of data characteristics that affect naive Bayes performance , 2001 .

[13]  J. Cardoso Infomax and maximum likelihood for blind source separation , 1997, IEEE Signal Processing Letters.

[14]  D. Chakrabarti,et al.  A fast fixed - point algorithm for independent component analysis , 1997 .

[15]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[16]  Aapo Hyvärinen,et al.  Sparse Code Shrinkage: Denoising of Nongaussian Data by Maximum Likelihood Estimation , 1999, Neural Computation.

[17]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[18]  Dinh Tuan Pham,et al.  Separation of a mixture of independent sources through a maximum likelihood approach , 1992 .

[19]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[20]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[21]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[22]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[23]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[24]  C Tomasi,et al.  Shape and motion from image streams: a factorization method. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Jordi Vitrià,et al.  A comparison of global versus local color histograms for object recognition , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[26]  Patrik O. Hoyer Independent Component Analysis in Image Denoising , 1999 .

[27]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[28]  Pierre Comon Independent component analysis - a new concept? signal processing , 1994 .

[29]  Bernt Schiele,et al.  Recognition without Correspondence using Multidimensional Receptive Field Histograms , 2004, International Journal of Computer Vision.

[30]  Jordi Vitrià,et al.  EigenHistograms: Using Low Dimensional Models of Color Distribution for Real Time Object Recognition , 1999, CAIP.

[31]  Rajesh P. N. Rao,et al.  Dynamic appearance-based vision , 1997 .

[32]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[33]  Erkki Oja,et al.  Independent Component Analysis for Identification of Artifacts in Magnetoencephalographic Recordings , 1997, NIPS.

[34]  Katsushi Ikeuchi,et al.  Detectability, Uniqueness, and Reliability of Eigen Windows for Stable Verification of Partially Occluded Objects , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.

[36]  Vapnik,et al.  SVMs for Histogram Based Image Classification , 1999 .

[37]  Cordelia Schmid,et al.  Evaluation of Interest Point Detectors , 2000, International Journal of Computer Vision.

[38]  Andrzej Cichocki,et al.  A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.

[39]  Stephen M. Omohundro,et al.  Nonlinear manifold learning for visual speech recognition , 1995, Proceedings of IEEE International Conference on Computer Vision.

[40]  Aapo Hyvärinen,et al.  New Approximations of Differential Entropy for Independent Component Analysis and Projection Pursuit , 1997, NIPS.

[41]  Shimon Ullman,et al.  Recognizing solid objects by alignment with an image , 1990, International Journal of Computer Vision.

[42]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Bernt Schiele,et al.  Transinformation for active object recognition , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[44]  David G. Lowe,et al.  Three-Dimensional Object Recognition from Single Two-Dimensional Images , 1987, Artif. Intell..

[45]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .