Introduction to Protein Structure Prediction

Preface. Contributors. 1 Introduction to Protein Structure Prediction (Huzefa Rangwala and George Karypis). 2 CASP: A Driving Force in Protein Structure Modeling (Andriy Kryshtafovych, Krzysztof Fidelis, and John Moult). 3 The Protein Structure Initiative (Andras Fiser, Adam Godzik, Christine Orengo, and Burkhard Rost). 4 Prediction of One-Dimensional Structural Properties of Proteins by Integrated Neural Networks (Yaoqi Zhou and Eshel Faraggi). 5 Local Structure Alphabets (Agnel Praveen Joseph, Aurelie Bornot, and Alexandre G. de Brevern). 6 Shedding Light on Transmembrane Topology (Gabor E. Tusnady and Istvan Simon). 7 Contact Map Prediction by Machine Learning (Alberto J.M. Martin, Catherine Mooney, Ian Walsh, and Gianluca Pollastri). 8 A Survey of Remote Homology Detection and Fold Recognition Methods (Huzefa Rangwala). 9 Interactive Protein Fold Recognition by Alignments and Machine Learning (Allison N. Tegge, Zheng Wang, and Jianlin Cheng). 10 Tasser-Based Protein Structure Prediction (Shashi Bhushan Pandit, Hongyi Zhou, and Jeffrey Skolnick). 11 Composite Approaches to Protein Tertiary Structure Prediction: A Case-Study by I-Tasser (Ambrish Roy, Sitao Wu, and Yang Zhang). 12 Hybrid Methods for Protein Structure Prediction (Dmitri Mourado, Bostjan Kobe, Nicholas E. Dixon, and Thomas Huber). 13 Modeling Loops in Protein Structures (Narcis Fernandez-Fuentes, Andras Fiser). 14 Model Quality Assessment Using A Statistical Program that Adopts A Side Chain Environment Viewpoint (Genki Terashi, Mayuko Takeda-Shitaka, Kazuhiko Kanou and Hideaki Umeyama). 15 Model Quality Prediction (Liam J. McGuffin). 16 Ligand-Binding Residue Prediction (Chris Kauffman and George Karypis). 17 Modeling and Validation of Transmembrane Protein Structures (Maya Schushan and Nir Ben-Tal). 18 Structure-Based Machine Learning Models for Computational Mutagenesis (Majid Masso and Iosif I. Vaisman). 19 Conformational Search for the Protein Native State (Amarda Shehu). 20 Modeling Mutations in Proteins Using MEDUSA and Discrete Molecule Dynamics (Shuangye Yin, Feng Ding, and Nikolay V. Dokholyan). Index.

[1]  Yang Zhang,et al.  I-TASSER server for protein 3D structure prediction , 2008, BMC Bioinformatics.

[2]  David A. Lee,et al.  Predicting protein function from sequence and structure , 2007, Nature Reviews Molecular Cell Biology.

[3]  Ke Wang,et al.  Profile-based string kernels for remote homology detection and motif extraction , 2004, Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004..

[4]  P. Bourne,et al.  Structural Bioinformatics: Bourne/Structural Bioinformatics , 2005 .

[5]  Wynne Hsu,et al.  Remote homolog detection using local sequence–structure correlations , 2004, Proteins.

[6]  Tatsuya Akutsu,et al.  Protein homology detection using string alignment kernels , 2004, Bioinform..

[7]  Mong-Li Lee,et al.  Efficient remote homology detection using local structure , 2003, Bioinform..

[8]  Ryan Day,et al.  A consensus view of fold space: Combining SCOP, CATH, and the Dali Domain Dictionary , 2003, Protein science : a publication of the Protein Society.

[9]  Patrice Koehl,et al.  The ASTRAL Compendium in 2004 , 2003, Nucleic Acids Res..

[10]  J. Whisstock,et al.  Prediction of protein function from protein sequence and structure , 2003, Quarterly Reviews of Biophysics.

[11]  Eleazar Eskin,et al.  The Spectrum Kernel: A String Kernel for SVM Protein Classification , 2001, Pacific Symposium on Biocomputing.

[12]  T. Bhat,et al.  The Protein Data Bank and the challenge of structural genomics , 2000, Nature Structural Biology.

[13]  A. Valencia,et al.  Practical limits of function prediction , 2000, Proteins.

[14]  David Haussler,et al.  A Discriminative Framework for Detecting Remote Protein Homologies , 2000, J. Comput. Biol..

[15]  D T Jones,et al.  A systematic comparison of protein structure classifications: SCOP, CATH and FSSP. , 1999, Structure.

[16]  David C. Jones,et al.  GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. , 1999, Journal of molecular biology.

[17]  J M Thornton,et al.  Domain assignment for protein structures using a consensus approach: Characterization and analysis , 1998, Protein science : a publication of the Protein Society.

[18]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[19]  David C. Jones,et al.  CATH--a hierarchic classification of protein domain structures. , 1997, Structure.

[20]  C Kooperberg,et al.  Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. , 1997, Journal of molecular biology.

[21]  A G Murzin,et al.  SCOP: a structural classification of proteins database for the investigation of sequences and structures. , 1995, Journal of molecular biology.

[22]  M. A. McClure,et al.  Hidden Markov models of biological primary sequence information. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[23]  C. Sander,et al.  Protein structure comparison by alignment of distance matrices. , 1993, Journal of molecular biology.

[24]  D. Haussler,et al.  Hidden Markov models in computational biology. Applications to protein modeling. , 1993, Journal of molecular biology.

[25]  D. T. Jones,et al.  A new approach to protein fold recognition , 1992, Nature.

[26]  E. Walters,et al.  Similar neuronal alterations induced by axonal injury and learning in Aplysia. , 1991, Science.

[27]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[28]  W R Taylor,et al.  Protein structure alignment. , 1989, Journal of molecular biology.

[29]  A. D. McLachlan,et al.  Profile analysis: detection of distantly related proteins. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[30]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[31]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[32]  Cathy H. Wu,et al.  The Universal Protein Resource (UniProt) , 2005, Nucleic Acids Res..

[33]  Č. Venclovas,et al.  Comparative modeling in CASP6 using consensus approach to template selection, sequence‐structure alignment, and structure assessment , 2005, Proteins.

[34]  Yang Zhang,et al.  TASSER: An automated method for the prediction of protein tertiary structures in CASP6 , 2005, Proteins.

[35]  David Baker,et al.  Protein Structure Prediction Using Rosetta , 2004, Numerical Computer Methods, Part D.

[36]  Ceslovas Venclovas,et al.  Comparative modeling in CASP5: Progress is evident, but alignment errors remain a significant hindrance , 2003, Proteins.

[37]  Li Liao,et al.  Combining Pairwise Sequence Similarity and Support Vector Machines for Detecting Remote Protein Evolutionary and Structural Relationships , 2003, J. Comput. Biol..

[38]  Jonathan Casper,et al.  Combining local‐structure, fold‐recognition, and new fold methods for protein structure prediction , 2003, Proteins.

[39]  Patrice Koehl,et al.  ASTRAL compendium enhancements , 2002, Nucleic Acids Res..

[40]  Jason Weston,et al.  Mismatch String Kernels for SVM Protein Classification , 2002, NIPS.

[41]  Patrice Koehl,et al.  The ASTRAL compendium for protein structure and sequence analysis , 2000, Nucleic Acids Res..

[42]  A. Sali,et al.  Modeling of loops in protein structures , 2000, Protein science : a publication of the Protein Society.

[43]  M J Sternberg,et al.  Model building by comparison at CASP3: Using expert knowledge and computer automation , 1999, Proteins.

[44]  Richard Hughey,et al.  Hidden Markov models for detecting remote protein homologies , 1998, Bioinform..

[45]  Chris Sander,et al.  The FSSP database: fold classification based on structure-structure alignment of proteins , 1996, Nucleic Acids Res..

[46]  J J Burbaum,et al.  Understanding structural relationships proteins of unsolved three‐dimensional structure , 1990, Proteins.

[47]  Julian Lee,et al.  PROTEINS: Structure, Function, and Bioinformatics 56:704–714 (2004) Prediction of Protein Tertiary Structure Using PROFESY, a Novel Method Based on Fragment Assembly and , 2022 .