Information-theoretic characterization of the complete genotype-phenotype map of a complex pre-biotic world

How information is encoded in bio-molecular sequences is difficult to quantify since such an analysis usually requires sampling an exponentially large genetic space. Here we show how information theory reveals both robust and compressed encodings in the largest complete genotype-phenotype map (over 5 trillion sequences) obtained to date.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  C. Titus Brown,et al.  Evolutionary Learning in the 2D Artificial Life System "Avida" , 1994, adap-org/9405003.

[3]  Matthew J. Tarnowski,et al.  From genotypes to organisms: State-of-the-art and perspectives of a cornerstone in evolutionary dynamics. , 2020, Physics of life reviews.

[4]  Ard A. Louis,et al.  The Arrival of the Frequent: How Bias in Genotype-Phenotype Maps Can Steer Populations to Local Optima , 2014, PloS one.

[5]  Christoph Adami,et al.  Information theory in molecular biology , 2004, q-bio/0405004.

[6]  Christoph Endres,et al.  Introduction to Artificial Life , 2000, Künstliche Intell..

[7]  Jack W. Szostak,et al.  Functional information: Molecular messages , 2003, Nature.

[8]  C. Wilke,et al.  Interaction between directional epistasis and average mutational effects , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[9]  Charles Ofria,et al.  Avida , 2004, Artificial Life.

[10]  C. Adami,et al.  Physical complexity of symbolic sequences , 1996, adap-org/9605002.

[11]  Eric L. Miller,et al.  The Ascent of the Abundant: How Mutational Networks Constrain Evolution , 2008, PLoS Comput. Biol..

[12]  Charles Ofria,et al.  The genotype-phenotype map of an evolving digital organism , 2017, PLoS Comput. Biol..