Metal−Organic Frameworks for High‐Energy Lithium Batteries with Enhanced Safety: Recent Progress and Future Perspectives

[1]  Wei Zhou,et al.  Enhanced H2 adsorption in isostructural metal-organic frameworks with open metal sites: strong dependence of the binding strength on metal ions. , 2008, Journal of the American Chemical Society.

[2]  X. Sun,et al.  Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries , 2019, Energy Storage Materials.

[3]  Daoben Zhu,et al.  A two-dimensional π–d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour , 2015, Nature Communications.

[4]  B. Dunn,et al.  A Metal-Organic Framework with Tetrahedral Aluminate Sites as a Single-Ion Li+ Solid Electrolyte. , 2018, Angewandte Chemie.

[5]  J. Hupp,et al.  Post-synthesis alkoxide formation within metal-organic framework materials: a strategy for incorporating highly coordinatively unsaturated metal ions. , 2009, Journal of the American Chemical Society.

[6]  Ralph G. Pearson,et al.  HARD AND SOFT ACIDS AND BASES , 1963 .

[7]  F. Kapteijn,et al.  Complexity behind CO2 capture on NH2-MIL-53(Al). , 2011, Langmuir : the ACS journal of surfaces and colloids.

[8]  Hua Zhang,et al.  Two-dimensional metal-organic framework nanosheets: synthesis and applications. , 2018, Chemical Society reviews.

[9]  A. Stephan,et al.  Review on gel polymer electrolytes for lithium batteries , 2006 .

[10]  Shichao Wu,et al.  Simultaneously Inhibiting Lithium Dendrites Growth and Polysulfides Shuttle by a Flexible MOF‐Based Membrane in Li–S Batteries , 2018, Advanced Energy Materials.

[11]  X. Lou,et al.  Formation of CoS2 Nanobubble Hollow Prisms for Highly Reversible Lithium Storage. , 2016, Angewandte Chemie.

[12]  D. Mecerreyes Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes , 2011 .

[13]  Donald J. Siegel,et al.  Tuning the Adsorption of Polysulfides in Lithium–Sulfur Batteries with Metal–Organic Frameworks , 2017 .

[14]  D. Zhao,et al.  Synthesis, morphology control, and properties of porous metal–organic coordination polymers , 2003 .

[15]  Ji‐Guang Zhang,et al.  Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries. , 2014, Nano letters.

[16]  C. Y. Chuah,et al.  Hierarchically Structured HKUST-1 Nanocrystals for Enhanced SF6 Capture and Recovery , 2017 .

[17]  Xi Wang,et al.  Controlled growth of dense and ordered metal-organic framework nanoparticles on graphene oxide. , 2015, Chemical communications.

[18]  Fei Pei,et al.  Large‐Area Preparation of Crack‐Free Crystalline Microporous Conductive Membrane to Upgrade High Energy Lithium–Sulfur Batteries , 2018, Advanced Energy Materials.

[19]  Guohua Chen,et al.  Graphene-Wrapped Chromium-MOF(MIL-101)/Sulfur Composite for Performance Improvement of High-Rate Rechargeable Li-S Batteries , 2014 .

[20]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[21]  Xiao‐Chen Liu,et al.  Metal-Organic Frameworks for High Charge-Discharge Rates in Lithium-Sulfur Batteries. , 2018, Angewandte Chemie.

[22]  Wei Shyy,et al.  A nano-structured RuO2/NiO cathode enables the operation of non-aqueous lithium–air batteries in ambient air , 2016 .

[23]  Teppei Yamada,et al.  Lithium Ion Diffusion in a Metal–Organic Framework Mediated by an Ionic Liquid , 2015 .

[24]  Amy J. Cairns,et al.  Synthesis and integration of Fe-soc-MOF cubes into colloidosomes via a single-step emulsion-based approach. , 2013, Journal of the American Chemical Society.

[25]  Hailiang Wang,et al.  Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. , 2013, Chemical Society reviews.

[26]  B. Lotsch,et al.  Additive-mediated size control of MOF nanoparticles , 2013 .

[27]  Qiang Xu,et al.  Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework. , 2016, Nature chemistry.

[28]  W. Weppner,et al.  Schnelle Lithiumionenleitung in granatartigem Li7La3Zr2O12 , 2007 .

[29]  X. Lou,et al.  Metal-Organic-Framework-Based Materials as Platforms for Renewable Energy and Environmental Applications , 2017 .

[30]  Y. Gogotsi What nano can do for energy storage. , 2014, ACS nano.

[31]  K. Loh,et al.  Structure-directing role of graphene in the synthesis of metal-organic framework nanowire. , 2010, Journal of the American Chemical Society.

[32]  Guoqing Zhang,et al.  Hollow metal-organic framework nanospheres via emulsion-based interfacial synthesis and their application in size-selective catalysis. , 2014, ACS applied materials & interfaces.

[33]  Luyi Yang,et al.  Boosting interfacial Li+ transport with a MOF-based ionic conductor for solid-state batteries , 2018, Nano Energy.

[34]  Jun Ma,et al.  All solid-state polymer electrolytes for high-performance lithium ion batteries , 2016 .

[35]  Shixin Wu,et al.  Bioinspired Design of Ultrathin 2D Bimetallic Metal–Organic‐Framework Nanosheets Used as Biomimetic Enzymes , 2016, Advanced materials.

[36]  Zhiyong Tang,et al.  Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution , 2016, Nature Energy.

[37]  Athanassios D. Katsenis,et al.  In Situ Monitoring and Mechanism of the Mechanochemical Formation of a Microporous MOF-74 Framework. , 2016, Journal of the American Chemical Society.

[38]  J. Goodenough,et al.  Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures. , 2015, Nano letters.

[39]  T. Uemura,et al.  Inclusion and dynamics of a polymer-Li salt complex in coordination nanochannels. , 2011, Chemical communications.

[40]  O. Konovalov,et al.  Interfacial growth of large-area single-layer metal-organic framework nanosheets , 2013, Scientific Reports.

[41]  Stuart L James,et al.  Metal-organic frameworks. , 2003, Chemical Society reviews.

[42]  Adam J. Rieth,et al.  Controlled Gas Uptake in Metal-Organic Frameworks with Record Ammonia Sorption. , 2018, Journal of the American Chemical Society.

[43]  Xin Guo,et al.  Nanostructured Metal-Organic Framework (MOF)-Derived Solid Electrolytes Realizing Fast Lithium Ion Transportation Kinetics in Solid-State Batteries. , 2019, Small.

[44]  O. Yaghi,et al.  Metal-organic frameworks with high capacity and selectivity for harmful gases , 2008, Proceedings of the National Academy of Sciences.

[45]  K. Han,et al.  Controlled Synthesis of Sulfur-Rich Polymeric Selenium Sulfides as Promising Electrode Materials for Long-Life, High-Rate Lithium Metal Batteries. , 2018, ACS applied materials & interfaces.

[46]  Donghai Wang,et al.  Nitrogen‐Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of High‐Areal‐Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithium‐Sulfur Batteries , 2014 .

[47]  J. Kang,et al.  Encapsulation of redox polysulphides via chemical interaction with nitrogen atoms in the organic linkers of metal-organic framework nanocrystals , 2016, Scientific Reports.

[48]  Hong Yang,et al.  Ca₂Mn₂O₅ as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction. , 2014, Journal of the American Chemical Society.

[49]  H. Furukawa,et al.  "Heterogeneity within order" in metal-organic frameworks. , 2015, Angewandte Chemie.

[50]  Xin Guo,et al.  MOF-derived nanoporous multifunctional fillers enhancing the performances of polymer electrolytes for solid-state lithium batteries , 2019, Journal of Materials Chemistry A.

[51]  Hua Zhang,et al.  Ultrathin 2D Metal–Organic Framework Nanosheets , 2015, Advanced materials.

[52]  A. Stesmans,et al.  On the chemistry and electrochemistry of LiPON breakdown , 2018 .

[53]  Dan He,et al.  Poly(ethylene oxide)-based electrolytes for lithium-ion batteries , 2015 .

[54]  Yun Jung Lee,et al.  Bimetallic Metal-Organic Frameworks as Efficient Cathode Catalysts for Li-O2 Batteries. , 2018, ACS applied materials & interfaces.

[55]  Lee Johnson,et al.  Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions. , 2016, Nature materials.

[56]  Mircea Dincă,et al.  Elektrisch leitfähige poröse Metall‐organische Gerüstverbindungen , 2016 .

[57]  M. Engelhard,et al.  Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium–sulfur batteries , 2013 .

[58]  Chao Li,et al.  Advances in Lithium‐Containing Anodes of Aprotic Li–O2 Batteries: Challenges and Strategies for Improvements , 2017 .

[59]  J. Cravillon,et al.  Fast nucleation and growth of ZIF-8 nanocrystals monitored by time-resolved in situ small-angle and wide-angle X-ray scattering. , 2011, Angewandte Chemie.

[60]  M. Lah,et al.  Templated and template-free fabrication strategies for zero-dimensional hollow MOF superstructures. , 2017, Dalton transactions.

[61]  Yang Shao-Horn,et al.  Lithium–oxygen batteries: bridging mechanistic understanding and battery performance , 2013 .

[62]  M. A. Kulandainathan,et al.  Innovative high performing metal organic framework (MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries , 2014 .

[63]  J. Long,et al.  Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals. , 2016, Nature materials.

[64]  M. Oh,et al.  Hollow Metal–Organic Framework Microparticles Assembled via a Self-Templated Formation Mechanism , 2015 .

[65]  Yugen Zhang,et al.  Redox Active Metal- and Covalent Organic Frameworks for Energy Storage: Balancing Porosity and Electrical Conductivity. , 2017, Chemistry.

[66]  H. Kitagawa,et al.  Ionic liquid transported into metal–organic frameworks , 2016 .

[67]  M. Dincǎ,et al.  Ti(3+)-, V(2+/3+)-, Cr(2+/3+)-, Mn(2+)-, and Fe(2+)-substituted MOF-5 and redox reactivity in Cr- and Fe-MOF-5. , 2013, Journal of the American Chemical Society.

[68]  Yuhui Chen,et al.  Charging a Li-O₂ battery using a redox mediator. , 2013, Nature chemistry.

[69]  Jared B. DeCoste,et al.  Extraordinary NO2 Removal by the Metal-Organic Framework UiO-66-NH2. , 2016, Angewandte Chemie.

[70]  Dan Zhao,et al.  Potential applications of metal-organic frameworks , 2009 .

[71]  C. Liang,et al.  Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium–sulfur batteries , 2017, Nature Communications.

[72]  R. Walton,et al.  High energy X-rays for following metal-organic framework formation: Identifying intermediates in interpenetrated MOF-5 crystallisation ☆ , 2017 .

[73]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[74]  A. Amassian,et al.  Functional Two-Dimensional Coordination Polymeric Layer as a Charge Barrier in Li-S Batteries. , 2018, ACS nano.

[75]  Shichao Wu,et al.  MOF-Based Separator in an Li–O2 Battery: An Effective Strategy to Restrain the Shuttling of Dual Redox Mediators , 2018 .

[76]  Nathan D. Ricke,et al.  Mechanistic Evidence for Ligand-Centered Electrocatalytic Oxygen Reduction with the Conductive MOF Ni3(hexaiminotriphenylene)2 , 2017 .

[77]  W. Meyer,et al.  Polymer electrolytes for lithium-ion batteries. , 1998, Advanced materials.

[78]  J. Long,et al.  High-enthalpy hydrogen adsorption in cation-exchanged variants of the microporous metal-organic framework Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2. , 2007, Journal of the American Chemical Society.

[79]  Jun Wang,et al.  ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. , 2014, Angewandte Chemie.

[80]  Yujie Ban,et al.  Two-Dimensional Metal-Organic Framework Nanosheets for Membrane-Based Gas Separation. , 2017, Angewandte Chemie.

[81]  Y. Schuurman,et al.  MOF-supported selective ethylene dimerization single-site catalysts through one-pot postsynthetic modification. , 2013, Journal of the American Chemical Society.

[82]  Susumu Kitagawa,et al.  Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. , 2009, Angewandte Chemie.

[83]  Qiang Xu,et al.  Metal-organic framework composites. , 2014, Chemical Society reviews.

[84]  Hong-Cai Zhou,et al.  Zr-based metal-organic frameworks: design, synthesis, structure, and applications. , 2016, Chemical Society reviews.

[85]  Craig M. Brown,et al.  Selective binding of O2 over N2 in a redox-active metal-organic framework with open iron(II) coordination sites. , 2011, Journal of the American Chemical Society.

[86]  Bo Wang,et al.  Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites , 2009, Proceedings of the National Academy of Sciences.

[87]  S. Jhung,et al.  Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction , 2015 .

[88]  Wenqi Zhao,et al.  3D, Mutually Embedded MOF@Carbon Nanotube Hybrid Networks for High‐Performance Lithium‐Sulfur Batteries , 2018, Advanced Energy Materials.

[89]  R. Robson,et al.  Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and Cu , 1990 .

[90]  Haoshen Zhou,et al.  Metal–organic framework-based separator for lithium–sulfur batteries , 2016, Nature Energy.

[91]  Linda F. Nazar,et al.  Advances in understanding mechanisms underpinning lithium–air batteries , 2016, Nature Energy.

[92]  Federico Bella,et al.  Metal organic framework laden poly(ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries , 2018, Electrochimica Acta.

[93]  Bruce Dunn,et al.  New Porous Crystals of Extended Metal-Catecholates , 2012 .

[94]  J. F. Stoddart,et al.  Large-Pore Apertures in a Series of Metal-Organic Frameworks , 2012, Science.

[95]  Armin Feldhoff,et al.  Molecular sieve membrane: supported metal-organic framework with high hydrogen selectivity. , 2010, Angewandte Chemie.

[96]  B. Han,et al.  Shape and size controlled synthesis of MOF nanocrystals with the assistance of ionic liquid mircoemulsions. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[97]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[98]  M. Walkowiak,et al.  Charge–discharge studies of all-solid-state Li/LiFePO4 cells with PEO-based composite electrolytes encompassing metal organic frameworks , 2016 .

[99]  T. Groy,et al.  Coordinatively Unsaturated Metal Centers in the Extended Porous Framework of Zn3(BDC)3·6CH3OH (BDC = 1,4-Benzenedicarboxylate) , 1998 .

[100]  Lars Öhrström,et al.  Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013) , 2013 .

[101]  Peyman Z. Moghadam,et al.  Development of a Cambridge Structural Database Subset: A Collection of Metal-Organic Frameworks for Past, Present, and Future , 2017 .

[102]  Wei‐Yin Sun,et al.  Facile fabrication and adsorption property of a nano/microporous coordination polymer with controllable size and morphology. , 2012, Chemical communications.

[103]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[104]  Jaephil Cho,et al.  Graphene/Graphene‐Tube Nanocomposites Templated from Cage‐Containing Metal‐Organic Frameworks for Oxygen Reduction in Li–O2 Batteries , 2014, Advanced materials.

[105]  Christopher H. Hendon,et al.  Million-Fold Electrical Conductivity Enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O) , 2015, Journal of the American Chemical Society.

[106]  Yang-Kook Sun,et al.  A Mo2C/Carbon Nanotube Composite Cathode for Lithium-Oxygen Batteries with High Energy Efficiency and Long Cycle Life. , 2015, ACS nano.

[107]  Xueliang Sun,et al.  From Lithium‐Oxygen to Lithium‐Air Batteries: Challenges and Opportunities , 2016 .

[108]  S. Qiao,et al.  Two-dimensional metal-organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. , 2017, Chemical communications.

[109]  Christina T. Lollar,et al.  Stable Metal–Organic Frameworks: Design, Synthesis, and Applications , 2018, Advanced materials.

[110]  G. Somorjai,et al.  Chemical Environment Control and Enhanced Catalytic Performance of Platinum Nanoparticles Embedded in Nanocrystalline Metal-Organic Frameworks. , 2015, Journal of the American Chemical Society.

[111]  Jun Lu,et al.  Effect of Componential Proportion in Bimetallic Electrocatalysts on the Aprotic Lithium‐Oxygen Battery Performance , 2018 .

[112]  Chad A Mirkin,et al.  Metal–Organic Framework Nanoparticles , 2018, Advanced materials.

[113]  J. Klinowski,et al.  Microwave-assisted synthesis of metal-organic frameworks. , 2011, Dalton transactions.

[114]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[115]  M. Falk,et al.  Promoting sulfur adsorption using surface Cu sites in metal–organic frameworks for lithium sulfur batteries , 2018 .

[116]  J. Baldwin,et al.  Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes. , 2012, ACS nano.

[117]  I. Díaz,et al.  Synthesis of metal–organic frameworks in water at room temperature: salts as linker sources , 2015 .

[118]  Min-Kyu Song,et al.  Hierarchically Porous Co-MOF-74 Hollow Nanorods for Enhanced Dynamic CO2 Separation. , 2018, ACS applied materials & interfaces.

[119]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[120]  A. Eftekhari,et al.  Metal-organic framework/carbon nanotube-coated polyethylene separator for improving the cycling performance of lithium-sulfur cells , 2018, Electrochimica Acta.

[121]  F. Kapteijn,et al.  Kinetic control of metal-organic framework crystallization investigated by time-resolved in situ X-ray scattering. , 2011, Angewandte Chemie.

[122]  Shichao Wu,et al.  A long-life lithium–sulphur battery by integrating zinc–organic framework based separator , 2016 .

[123]  K. Akhbari,et al.  Post-synthetic ion-exchange process in nanoporous metal–organic frameworks; an effective way for modulating their structures and properties , 2017 .

[124]  David C. Cantu,et al.  Formation Mechanism of the Secondary Building Unit in a Chromium Terephthalate Metal–Organic Framework , 2014 .

[125]  Chanel F. Leong,et al.  Intrinsically conducting metal–organic frameworks , 2016 .

[126]  Susumu Kitagawa,et al.  Controlled Multiscale Synthesis of Porous Coordination Polymer in Nano/Micro Regimes , 2010 .

[127]  H. Kataoka,et al.  Ionic conduction mechanisms of lithium gel polymer electrolytes investigated by the conductivity and diffusion coefficient , 2003 .

[128]  Inhar Imaz,et al.  A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures. , 2013, Nature chemistry.

[129]  E. Haque,et al.  Synthesis of a metal-organic framework material, iron terephthalate, by ultrasound, microwave, and conventional electric heating: a kinetic study. , 2010, Chemistry.

[130]  M. Dincǎ,et al.  High charge mobility in a tetrathiafulvalene-based microporous metal-organic framework. , 2012, Journal of the American Chemical Society.

[131]  Mingyan Wu,et al.  pH modulated assembly in the mixed-ligand system Cd(II)–dpstc–phen: structural diversity and luminescent properties , 2013 .

[132]  Shuhong Yu,et al.  Template-Directed Growth of Well-Aligned MOF Arrays and Derived Self-Supporting Electrodes for Water Splitting , 2017 .

[133]  S. Ha,et al.  Enhanced cycling performance of rechargeable Li–O2 batteries via LiOH formation and decomposition using high-performance MOF-74@CNTs hybrid catalysts , 2019, Energy Storage Materials.

[134]  Y. Lou,et al.  Downsizing metal–organic frameworks with distinct morphologies as cathode materials for high-capacity Li–O2 batteries , 2017 .

[135]  Huanting Wang,et al.  An ordered ZIF-8-derived layered double hydroxide hollow nanoparticles-nanoflake array for high efficiency energy storage , 2016 .

[136]  Takashi Kitao,et al.  Nanostructuration of PEDOT in Porous Coordination Polymers for Tunable Porosity and Conductivity. , 2016, Journal of the American Chemical Society.

[137]  M. Armand,et al.  Building better batteries , 2008, Nature.

[138]  Omar K. Farha,et al.  Transmetalation: routes to metal exchange within metal–organic frameworks , 2013 .

[139]  Mohamed H. Hassan,et al.  Metal–organic framework@SiO2 as permselective separator for lithium–sulfur batteries , 2018 .

[140]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[141]  Xin-bo Zhang,et al.  Recent Progress in Electrocatalyst for Li‐O2 Batteries , 2017 .

[142]  Yi Wang,et al.  Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. , 2012, Nature chemistry.

[143]  David P. Wilkinson,et al.  Recent advances in all-solid-state rechargeable lithium batteries , 2017 .

[144]  Jeffrey S. Moore,et al.  Zeolite-like behavior of a coordination network , 1995 .

[145]  Wenbin Lin,et al.  Surfactant-assisted synthesis of nanoscale gadolinium metal-organic frameworks for potential multimodal imaging. , 2008, Angewandte Chemie.

[146]  Stefano Passerini,et al.  Polymerelektrolyte auf Basis ionischer Flüssigkeiten für Batterieanwendungen , 2016 .

[147]  Jonathan L. Brosmer,et al.  Creating Lithium‐Ion Electrolytes with Biomimetic Ionic Channels in Metal–Organic Frameworks , 2018, Advanced materials.

[148]  W. Ahn,et al.  Metal-organic framework MOF-5 prepared by microwave heating: Factors to be considered , 2008 .

[149]  C. Serre,et al.  Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. , 2011, Chemical communications.

[150]  Jiaqi Huang,et al.  Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and prospects , 2015 .

[151]  L. Johnson,et al.  A rechargeable lithium–oxygen battery with dual mediators stabilizing the carbon cathode , 2017, Nature Energy.

[152]  B. Abrahams,et al.  Assembly of porphyrin building blocks into network structures with large channels , 1994, Nature.

[153]  Xin-bo Zhang,et al.  Synthesis of perovskite-based porous La(0.75)Sr(0.25)MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries. , 2013, Angewandte Chemie.

[154]  R. Vedarajan,et al.  Modified Metal Organic Frameworks (MOFs)/Ionic Liquid Matrices for Efficient Charge Storage , 2017 .

[155]  Gérard Férey,et al.  Cathode composites for Li-S batteries via the use of oxygenated porous architectures. , 2011, Journal of the American Chemical Society.

[156]  A. Thornton,et al.  New synthetic routes towards MOF production at scale. , 2017, Chemical Society reviews.

[157]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[158]  James E Hutchison,et al.  Toward greener nanosynthesis. , 2007, Chemical reviews.

[159]  Teppei Yamada,et al.  Introduction of an ionic liquid into the micropores of a metal-organic framework and its anomalous phase behavior. , 2014, Angewandte Chemie.

[160]  J. Caro,et al.  Controllable Synthesis of Metal–Organic Frameworks: From MOF Nanorods to Oriented MOF Membranes , 2010, Advanced materials.

[161]  Mario Ruben,et al.  Grid-type metal ion architectures: functional metallosupramolecular arrays. , 2004, Angewandte Chemie.

[162]  Kyung Min Choi,et al.  Supercapacitors of nanocrystalline metal-organic frameworks. , 2014, ACS nano.

[163]  Peter G Bruce,et al.  Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. , 2008, Angewandte Chemie.

[164]  W. Zhou,et al.  Carbon capture in metal–organic frameworks—a comparative study , 2011 .

[165]  Xiao Xing Liang,et al.  Improved cycling performances of lithium sulfur batteries with LiNO 3-modified electrolyte , 2011 .

[166]  E. Miner,et al.  High Li+ and Mg2+ Conductivity in a Cu-Azolate Metal-Organic Framework. , 2019, Journal of the American Chemical Society.

[167]  R. Sun,et al.  A high performance O2 selective membrane based on CAU-1-NH2@polydopamine and the PMMA polymer for Li-air batteries. , 2015, Chemical communications.

[168]  Ashlee J Howarth,et al.  Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications. , 2017, Accounts of chemical research.

[169]  Qiang Xu,et al.  Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance. , 2013, Journal of the American Chemical Society.

[170]  B. McCloskey,et al.  Nonaqueous Li-air batteries: a status report. , 2014, Chemical reviews.

[171]  Nguyen T. K. Thanh,et al.  Mechanisms of nucleation and growth of nanoparticles in solution. , 2014, Chemical reviews.

[172]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[173]  Yuepeng Cai,et al.  Confinement of polysulfides within bi-functional metal-organic frameworks for high performance lithium-sulfur batteries. , 2018, Nanoscale.

[174]  C. Su,et al.  Bimetallic Zeolitic Imidazolite Framework Derived Carbon Nanotubes Embedded with Co Nanoparticles for Efficient Bifunctional Oxygen Electrocatalyst , 2018 .

[175]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[176]  Carlo Lamberti,et al.  The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities. , 2007, Journal of the American Chemical Society.

[177]  Christopher H. Hendon,et al.  Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks. , 2015, Journal of the American Chemical Society.

[178]  Mircea Dincă,et al.  Electrically Conductive Porous Metal-Organic Frameworks. , 2016, Angewandte Chemie.

[179]  R. Fischer,et al.  Trapping metal-organic framework nanocrystals: an in-situ time-resolved light scattering study on the crystal growth of MOF-5 in solution. , 2007, Journal of the American Chemical Society.

[180]  Thomas L. Theis,et al.  Toward Sustainable Nanoproducts , 2008 .

[181]  Benjamin Meyer,et al.  Electrolyte optimization for the primary lithium metal air battery using an oxygen selective membrane , 2012 .

[182]  D. D’Alessandro,et al.  Through-Space Intervalence Charge Transfer as a Mechanism for Charge Delocalization in Metal-Organic Frameworks. , 2018, Journal of the American Chemical Society.

[183]  F. Aguesse,et al.  Scandium/Alkaline Metal–Organic Frameworks: Adsorptive Properties and Ionic Conductivity , 2016 .

[184]  B. Scrosati,et al.  Ionic-Liquid-Based Polymer Electrolytes for Battery Applications. , 2016, Angewandte Chemie.

[185]  Wei Liu,et al.  Covalently linked metal–organic framework (MOF)-polymer all-solid-state electrolyte membranes for room temperature high performance lithium batteries , 2018 .

[186]  Shaoming Huang,et al.  A Lightweight TiO2/Graphene Interlayer, Applied as a Highly Effective Polysulfide Absorbent for Fast, Long‐Life Lithium–Sulfur Batteries , 2015, Advanced materials.

[187]  Zhian Zhang,et al.  Enhanced electrochemical performance of poly(ethylene oxide) based composite polymer electrolyte by incorporation of nano-sized metal-organic framework , 2013 .

[188]  Shasha Zheng,et al.  Metal‐Organic Framework‐Derived Carbons for Battery Applications , 2018, Advanced Energy Materials.

[189]  Seth M. Cohen,et al.  Metal–organic frameworks for membrane-based separations , 2016 .

[190]  M. Oh,et al.  Advanced fabrication of metal-organic frameworks: template-directed formation of polystyrene@ZIF-8 core-shell and hollow ZIF-8 microspheres. , 2012, Chemical communications.

[191]  D. Aurbach,et al.  Redox Mediators for Li–O2 Batteries: Status and Perspectives , 2018, Advanced materials.

[192]  Eduardo C. Escudero‐Adán,et al.  Metal-Organic Framework (MOF) Defects under Control: Insights into the Missing Linker Sites and Their Implication in the Reactivity of Zirconium-Based Frameworks. , 2015, Inorganic chemistry.

[193]  Lynden A Archer,et al.  Ionic-liquid-tethered nanoparticles: hybrid electrolytes. , 2010, Angewandte Chemie.

[194]  Lin Gu,et al.  Smaller sulfur molecules promise better lithium-sulfur batteries. , 2012, Journal of the American Chemical Society.

[195]  Feng Wu,et al.  Metal-organic frameworks composites threaded on the CNT knitted separator for suppressing the shuttle effect of lithium sulfur batteries , 2018, Energy Storage Materials.

[196]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[197]  D. D’Alessandro,et al.  Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. , 2009, Journal of the American Chemical Society.

[198]  J. Hupp,et al.  Chemical, thermal and mechanical stabilities of metal–organic frameworks , 2016 .

[199]  Lain‐Jong Li,et al.  Metal-Organic Framework-Based Separators for Enhancing Li-S Battery Stability: Mechanism of Mitigating Polysulfide Diffusion , 2017 .

[200]  M. O'keeffe,et al.  Zeolite A imidazolate frameworks. , 2007, Nature materials.

[201]  Gang Xu,et al.  Conductive Metal–Organic Framework Nanowire Array Electrodes for High‐Performance Solid‐State Supercapacitors , 2017 .

[202]  Ziqi Wang,et al.  Mixed-Metal-Organic Framework with Effective Lewis Acidic Sites for Sulfur Confinement in High-Performance Lithium-Sulfur Batteries. , 2015, ACS applied materials & interfaces.

[203]  C. Serre,et al.  An EXAFS study of the formation of a nanoporous metal-organic framework: evidence for the retention of secondary building units during synthesis. , 2006, Chemical communications.

[204]  Omar M Yaghi,et al.  Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. , 2005, Journal of the American Chemical Society.

[205]  Hui Cheng,et al.  CuCo Bimetallic Oxide Quantum Dot Decorated Nitrogen‐Doped Carbon Nanotubes: A High‐Efficiency Bifunctional Oxygen Electrode for Zn–Air Batteries , 2017 .

[206]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[207]  Michel Waroquier,et al.  Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). , 2013, Journal of the American Chemical Society.

[208]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[209]  S. Ng,,et al.  Rational Construction of Porous Polymeric Cadmium Ferrocene-1,1′-disulfonates for Transition Metal Ion Exchange and Sorption , 2007 .

[210]  J Alexander Liddle,et al.  Nanomanufacturing: A Perspective. , 2016, ACS nano.

[211]  Fang Zhang,et al.  Hollow zeolitic imidazolate framework nanospheres as highly efficient cooperative catalysts for [3+3] cycloaddition reactions. , 2014, Journal of the American Chemical Society.

[212]  Wei Li,et al.  Rational design of a metal–organic framework host for sulfur storage in fast, long-cycle Li–S batteries , 2014 .

[213]  Xun Wang,et al.  Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions. , 2014, Angewandte Chemie.

[214]  Roland A. Fischer,et al.  Wachstumsmechanismen Metall‐organischer Gerüststrukturen: Einblicke in die Keimbildung anhand einer schrittweisen Methodik , 2009 .

[215]  Jun Kim,et al.  Post-synthesis functionalization of MIL-101 using diethylenetriamine: a study on adsorption and catalysis , 2012 .

[216]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[217]  Lele Peng,et al.  Holey 2D Nanomaterials for Electrochemical Energy Storage , 2018 .

[218]  Venkataraman Thangadurai,et al.  Lithium Lanthanum Titanates: A Review , 2003 .

[219]  F. Pan,et al.  Theoretical Investigation of 2D Conductive Microporous Coordination Polymers as Li–S Battery Cathode with Ultrahigh Energy Density , 2018, Advanced Energy Materials.

[220]  Jun Chen,et al.  Micro-nano structured Ni-MOFs as high-performance cathode catalyst for rechargeable Li-O2 batteries. , 2015, Nanoscale.

[221]  Joseph S. Elias,et al.  Conductive MOF electrodes for stable supercapacitors with high areal capacitance. , 2017, Nature materials.

[222]  Jie Gao,et al.  Effects of Liquid Electrolytes on the Charge–Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies , 2011 .

[223]  Jun Liang,et al.  Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions. , 2017, Chemical Society reviews.

[224]  T. Groy,et al.  Establishing Microporosity in Open Metal−Organic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate) , 1998 .

[225]  Chongli Zhong,et al.  Rational construction of defects in a metal–organic framework for highly efficient adsorption and separation of dyes , 2016 .

[226]  M. E. Foster,et al.  Tunable Electrical Conductivity in Metal-Organic Framework Thin-Film Devices , 2014, Science.

[227]  S. Kitagawa,et al.  Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis. , 2007, Journal of the American Chemical Society.

[228]  M. Wilkening,et al.  Mechanism and performance of lithium–oxygen batteries – a perspective , 2017, Chemical science.

[229]  Arumugam Manthiram,et al.  A strategic approach to recharging lithium-sulphur batteries for long cycle life , 2013, Nature Communications.

[230]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[231]  Yexiang Liu,et al.  A fast charging/discharging all-solid-state lithium ion battery based on PEO-MIL-53(Al)-LiTFSI thin film electrolyte , 2014 .

[232]  Yi Cui,et al.  Designing high-energy lithium-sulfur batteries. , 2016, Chemical Society reviews.

[233]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[234]  Shuo Chen,et al.  Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. , 2010, Journal of the American Chemical Society.

[235]  Sonochemistry , 1990, Science.

[236]  Alán Aspuru-Guzik,et al.  High electrical conductivity in Ni₃(2,3,6,7,10,11-hexaiminotriphenylene)₂, a semiconducting metal-organic graphene analogue. , 2014, Journal of the American Chemical Society.

[237]  Jun Kim,et al.  Sonochemical synthesis of MOF-5. , 2008, Chemical communications.

[238]  Fan Wu,et al.  Advanced sulfide solid electrolyte by core-shell structural design , 2018, Nature Communications.

[239]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[240]  J. R. Schmidt,et al.  In Situ, Time-Resolved, and Mechanistic Studies of Metal-Organic Framework Nucleation and Growth. , 2018, Chemical reviews.

[241]  Banglin Chen,et al.  High H2 adsorption in a microporous metal-organic framework with open metal sites. , 2005, Angewandte Chemie.

[242]  J. Nørskov,et al.  Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries. , 2012, The journal of physical chemistry letters.

[243]  Linda F. Nazar,et al.  Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes , 2016, Nature Energy.

[244]  Lars Öhrström,et al.  Coordination polymers, metal-organic frameworks and the need for terminology guidelines , 2012 .

[245]  Eric C Evarts Lithium batteries: To the limits of lithium , 2015, Nature.

[246]  Yuan Peng,et al.  Metal-organic framework nanosheets as building blocks for molecular sieving membranes , 2014, Science.

[247]  Z. Shen,et al.  Refined Sulfur Nanoparticles Immobilized in Metal-Organic Polyhedron as Stable Cathodes for Li-S Battery. , 2016, ACS applied materials & interfaces.

[248]  J. Goodenough Energy storage materials: A perspective , 2015 .

[249]  Hun‐Gi Jung,et al.  Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries. , 2013, ACS nano.

[250]  Lirong Zheng,et al.  Ionic liquid accelerates the crystallization of Zr-based metal–organic frameworks , 2017, Nature Communications.

[251]  Qiang Xu,et al.  Pristine Metal–Organic Frameworks and their Composites for Energy Storage and Conversion , 2018, Advanced materials.

[252]  Kenji Sumida,et al.  Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption , 2011 .

[253]  Y. Uchida,et al.  Nanosheet Synthesis of Metal Organic Frameworks in a Sandwich-like Reaction Field for Enhanced Gate-Opening Pressures , 2018, ACS Applied Nano Materials.

[254]  Seth M Cohen,et al.  Postsynthetic modification of metal-organic frameworks--a progress report. , 2011, Chemical Society reviews.

[255]  Frede Blaabjerg,et al.  Renewable energy resources: Current status, future prospects and their enabling technology , 2014 .

[256]  Timothy R. Cook,et al.  Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. , 2013, Chemical reviews.

[257]  U. Müller,et al.  “Heterogenität innerhalb von Ordnung” in Metall‐organischen Gerüsten , 2015 .

[258]  Junhua Song,et al.  Tuning the structure and composition of graphite-phase polymeric carbon nitride/reduced graphene oxide composites towards enhanced lithium-sulfur batteries performance , 2017 .

[259]  Ziqi Wang,et al.  A Metal–Organic Framework with Open Metal Sites for Enhanced Confinement of Sulfur and Lithium–Sulfur Battery of Long Cycling Life , 2013 .

[260]  J. Hupp,et al.  Coordination-chemistry control of proton conductivity in the iconic metal-organic framework material HKUST-1. , 2012, Journal of the American Chemical Society.

[261]  Dan Xu,et al.  3D ordered macroporous LaFeO3 as efficient electrocatalyst for Li–O2 batteries with enhanced rate capability and cyclic performance , 2014 .

[262]  M. Vandichel,et al.  Origin of highly active metal-organic framework catalysts: defects? Defects! , 2016, Dalton transactions.

[263]  V. Viswanathan,et al.  Trade-Offs in Capacity and Rechargeability in Nonaqueous Li-O2 Batteries: Solution-Driven Growth versus Nucleophilic Stability. , 2015, The journal of physical chemistry letters.

[264]  Qiang Xu,et al.  Top-down fabrication of crystalline metal-organic framework nanosheets. , 2011, Chemical communications.

[265]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[266]  J. M. Zamaro,et al.  Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20) , 2012 .

[267]  Zhenan Bao,et al.  Robust and conductive two-dimensional metal−organic frameworks with exceptionally high volumetric and areal capacitance , 2018, Nature Energy.

[268]  Ziyang Guo,et al.  Metal–Organic Frameworks as Cathode Materials for Li–O2 Batteries , 2014, Advanced materials.

[269]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[270]  Weili Lin,et al.  Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. , 2006, Journal of the American Chemical Society.

[271]  Yang Liu,et al.  Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations , 2018, Nature Materials.

[272]  Michael O'Keeffe,et al.  Cu2(ATC)·6H2O: Design of open metal sites in porous metal-organic crystals (ATC: 1,3,5,7-Adamantane Tetracarboxylate) [27] , 2000 .

[273]  Jun Chen,et al.  Mechanistic Evolution of Aprotic Lithium‐Oxygen Batteries , 2017 .

[274]  R. J. P. Williams,et al.  637. The stability of transition-metal complexes , 1953 .

[275]  Omar M Yaghi,et al.  Isoreticular metalation of metal-organic frameworks. , 2009, Journal of the American Chemical Society.

[276]  Zongping Shao,et al.  Recent Advances in Metal‐Organic Framework Derivatives as Oxygen Catalysts for Zinc‐Air Batteries , 2018, Batteries & Supercaps.

[277]  Qiang Xu,et al.  From Ru nanoparticle-encapsulated metal–organic frameworks to highly catalytically active Cu/Ru nanoparticle-embedded porous carbon , 2017 .

[278]  J. Long,et al.  A solid lithium electrolyte via addition of lithium isopropoxide to a metal-organic framework with open metal sites. , 2011, Journal of the American Chemical Society.

[279]  R. Fischer,et al.  Defect-Engineered Metal–Organic Frameworks , 2015, Angewandte Chemie.

[280]  Arumugam Manthiram,et al.  A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer. , 2012, Chemical communications.

[281]  C. Serre,et al.  Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. , 2008, Angewandte Chemie.

[282]  F. Zamora,et al.  Electrical conductive coordination polymers. , 2012, Chemical Society reviews.

[283]  Jiangtao Hu,et al.  A Metal–Organic‐Framework‐Based Electrolyte with Nanowetted Interfaces for High‐Energy‐Density Solid‐State Lithium Battery , 2018, Advanced materials.

[284]  Xun Wang,et al.  Well‐Defined Metal–Organic‐Framework Hollow Nanostructures for Catalytic Reactions Involving Gases , 2015, Advanced materials.

[285]  L. Nazar,et al.  The role of vacancies and defects in Na0.44MnO2 nanowire catalysts for lithium–oxygen batteries , 2012 .

[286]  B. McCloskey,et al.  An electrochemical impedance spectroscopy investigation of the overpotentials in Li-O2 batteries. , 2015, ACS applied materials & interfaces.

[287]  M. Dincǎ,et al.  Single-Ion Li+, Na+, and Mg2+ Solid Electrolytes Supported by a Mesoporous Anionic Cu-Azolate Metal-Organic Framework. , 2017, Journal of the American Chemical Society.

[288]  Christopher A. Trickett,et al.  The chemistry of metal–organic frameworks for CO 2 capture, regeneration and conversion , 2017 .

[289]  Qiang Xu,et al.  Metal-Organic Frameworks for Energy Applications , 2017 .

[290]  Sabu Thomas,et al.  Metal-organic frameworks based membrane as a permselective separator for lithium-sulfur batteries , 2018 .

[291]  Seth M. Cohen,et al.  Tandem modification of metal-organic frameworks by a postsynthetic approach. , 2008, Angewandte Chemie.

[292]  N. López,et al.  Solvent-dependent cation exchange in metal-organic frameworks. , 2014, Chemistry.

[293]  Yanchen Fan,et al.  Modeling and theoretical design of next-generation lithium metal batteries , 2019, Energy Storage Materials.

[294]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[295]  Ruqiang Zou,et al.  Metal-Organic Frameworks for Batteries , 2018, Joule.

[296]  Shyam Biswas,et al.  Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. , 2012, Chemical reviews.

[297]  G. Somorjai,et al.  Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts. , 2014, Nano letters.

[298]  Jun Kim,et al.  High yield 1-L scale synthesis of ZIF-8 via a sonochemical route , 2013 .

[299]  Nobuyuki Imanishi,et al.  Rechargeable lithium–air batteries: characteristics and prospects , 2014 .

[300]  Younan Xia,et al.  Synthesis of silver nanostructures with controlled shapes and properties. , 2007, Accounts of chemical research.

[301]  F. Fathieh,et al.  The Chemistry of CO2 Capture in an Amine-Functionalized Metal-Organic Framework under Dry and Humid Conditions. , 2017, Journal of the American Chemical Society.

[302]  O. Yaghi,et al.  Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels , 1995 .

[303]  K. Loh,et al.  A Graphene Oxide and Copper‐Centered Metal Organic Framework Composite as a Tri‐Functional Catalyst for HER, OER, and ORR , 2013 .

[304]  Christopher H. Hendon,et al.  Signature of Metallic Behavior in the Metal-Organic Frameworks M3(hexaiminobenzene)2 (M = Ni, Cu). , 2017, Journal of the American Chemical Society.

[305]  Haegyeom Kim,et al.  Reaction chemistry in rechargeable Li-O2 batteries. , 2017, Chemical Society reviews.

[306]  Jihye Park,et al.  Size-Controlled Synthesis of Porphyrinic Metal-Organic Framework and Functionalization for Targeted Photodynamic Therapy. , 2016, Journal of the American Chemical Society.

[307]  Roland A. Fischer,et al.  Defektmanipulierte Metall‐organische Gerüste , 2015 .

[308]  Rob Ameloot,et al.  Ionic conductivity in the metal-organic framework UiO-66 by dehydration and insertion of lithium tert-butoxide. , 2013, Chemistry.

[309]  D. Bradshaw,et al.  Synthesis and applications of metal-organic framework–quantum dot (QD@MOF) composites , 2016 .

[310]  M. Dincǎ,et al.  Cation exchange at the secondary building units of metal-organic frameworks. , 2014, Chemical Society reviews.

[311]  M. A. Kulandainathan,et al.  Composite Polymer Electrolytes Encompassing Metal Organic Frame Works: A New Strategy for All-Solid-State Lithium Batteries , 2014 .

[312]  J. Amici,et al.  Protective PVDF-HFP-based membranes for air de-hydration at the cathode of the rechargeable Li–air cell , 2016, Journal of Applied Electrochemistry.

[313]  O. Shekhah,et al.  Growth mechanism of metal-organic frameworks: insights into the nucleation by employing a step-by-step route. , 2009, Angewandte Chemie.

[314]  Xiaoming Zhang,et al.  Novel Conductive Metal-Organic Framework for a High-Performance Lithium-Sulfur Battery Host: 2D Cu-Benzenehexathial (BHT). , 2018, ACS applied materials & interfaces.

[315]  Shuang-Yi Wan,et al.  Recent advances in post-synthetic modification of metal–organic frameworks: New types and tandem reactions , 2017, Coordination Chemistry Reviews.

[316]  Jian Liu,et al.  Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. , 2015, Journal of the American Chemical Society.

[317]  Guowu Zhan,et al.  Synthesis and Functionalization of Oriented Metal–Organic‐Framework Nanosheets: Toward a Series of 2D Catalysts , 2016 .

[318]  Yadong Li,et al.  Hollow Zn/Co ZIF Particles Derived from Core-Shell ZIF-67@ZIF-8 as Selective Catalyst for the Semi-Hydrogenation of Acetylene. , 2015, Angewandte Chemie.

[319]  Hongjie Zhang,et al.  Combining Coordination Modulation with Acid–Base Adjustment for the Control over Size of Metal–Organic Frameworks , 2012 .