Logarithmic integrals and system dynamics: An analogue of Bode's sensitivity integral for continuous-time, time-varying systems

A new time-domain interpretation of Bode's integral is presented. This allows for a generalization to the class of time-varying systems which possess an exponential dichotomy. It is shown that the sensitivity function is constrained, on average, by the spectral values in the dichotomy spectrum of the antistable component of the open-loop dynamics.

[1]  Pablo A. Iglesias,et al.  Tradeoffs in linear time-varying systems: an analogue of Bode's sensitivity integral , 2001, Autom..

[2]  S. Hara,et al.  Constraints on sensitivity characteristics in linear multivariable discrete-time control systems , 1989 .

[3]  W. Rugh Linear System Theory , 1992 .

[4]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[5]  M. A. Kaashoek,et al.  Szegö-Kac-Achiezer formulas in terms of realizations of the symbol , 1987 .

[6]  P. Khargonekar,et al.  H ∞ control of linear time-varying systems: a state-space approach , 1991 .

[7]  Jie Chen Sensitivity Integral Relations and Design Tradeoffs in Linear Multivariable Feedback Systems , 1993, 1993 American Control Conference.

[8]  P. Iglesias An Entropy Formula for Time-Varying Discrete-Time Control Systems , 1996 .

[9]  R. Russell,et al.  On the Compuation of Lyapunov Exponents for Continuous Dynamical Systems , 1997 .

[10]  Keith Glover Minimum entropy and risk-sensitive control: the continuous time case , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[11]  Stephen P. Boyd,et al.  Subharmonic functions and performance bounds on linear time-invariant feedback systems , 1984, IEEE Conference on Decision and Control.

[12]  P. Khargonekar,et al.  Exponential and input-output stability are equivalent for linear time-varying systems , 1993 .

[13]  R. Middleton,et al.  Inherent design limitations for linear sampled-data feedback systems , 1995 .

[14]  Pablo A. Iglesias,et al.  Continuous-time time-varying entropy , 1997, Math. Control. Signals Syst..

[15]  Shinji Hara,et al.  Sensitivity improvement by a stable controller in SISO digital control systems , 1989 .

[16]  Sergej S. Vojtenko,et al.  Existence conditions for stabilizing and antistabilizing solutions to the nonautonomous matrix Riccati differential equation , 1987, Kybernetika.

[17]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[18]  K. Glover,et al.  State-space formulae for all stabilizing controllers that satisfy and H ∞ norm bound and relations to risk sensitivity , 1988 .

[19]  W. A. Coppel Dichotomies in Stability Theory , 1978 .

[20]  George R. Sell,et al.  A Spectral Theory for Linear Differential Systems , 1978 .

[21]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[22]  David Q. Mayne,et al.  Feedback limitations in nonlinear systems: from Bode integrals to cheap control , 1999, IEEE Trans. Autom. Control..

[23]  M. Kreĭn,et al.  Introduction to the theory of linear nonselfadjoint operators , 1969 .

[24]  Rick H. Middleton,et al.  Trade-offs in linear control system design , 1991, Autom..

[25]  Shinji Hara,et al.  Properties of sensitivity and complementary sensitivity functions in single-input single-output digital control systems , 1988 .

[26]  L. Arnold Random Dynamical Systems , 2003 .

[27]  Pablo A. Iglesias,et al.  The relationship between minimum entropy control and risk-sensitive control for time-varying systems , 1999, IEEE Trans. Autom. Control..

[28]  J. J. Schaffer,et al.  Linear differential equations and function spaces , 1966 .

[29]  Jie Chen Multivariable gain-phase and sensitivity integral relations and design trade-offs , 1998, IEEE Trans. Autom. Control..

[30]  Carl N. Nett,et al.  Sensitivity integrals for multivariable discrete-time systems , 1995, Autom..

[31]  Achim Ilchmann,et al.  Stabilizability of systems with exponential dichotomy , 1987 .

[32]  J. Freudenberg,et al.  Right half plane poles and zeros and design tradeoffs in feedback systems , 1985 .

[33]  H. Dym,et al.  An abstract version of a limit theorem of Szegö , 1981 .