Energy-Based Modeling and Control of a Piezotube Actuated Optical Fiber

This article presents an energy-based modeling and control design method for a piezotube actuated optical fiber. A nonlinear infinite dimensional port Hamiltonian (pH) formulation of the 3-D flexible optical fiber is derived from the Cosserat rod dynamical equations. Then, the proposed infinite dimensional model is discretized using a pH structure and passivity preserving discretization method for the simulation and control design. This model is then validated against experimental data obtained using a built-in experimental setup equipped with a MEMS Analyzer. A complete pH formulation of the piezotube actuated optical fiber is proposed, combining the Cosserat rod model and actuator dynamics. This model is used for the end-point path control design using an interconnection and damping assignment passivity based control (IDA-PBC) method. Both the proposed pH model of the overall system and the controller are validated in simulation and against experimental results.

[1]  K. Rabenorosoa,et al.  Modeling and Position Control of the HASEL Actuator via Port-Hamiltonian Approach , 2022, IEEE Robotics and Automation Letters.

[2]  F. Rodriguez y Baena,et al.  Adaptive Energy Shaping Control of a Class of Nonlinear Soft Continuum Manipulators , 2022, IEEE/ASME Transactions on Mechatronics.

[3]  J. Szewczyk,et al.  A Hybrid Concentric Tube Robot for Cholesteatoma Laser Surgery , 2022, IEEE Robotics and Automation Letters.

[4]  D. Caldwell,et al.  μRALP and Beyond: Micro-Technologies and Systems for Robot-Assisted Endoscopic Laser Microsurgery , 2021, Frontiers in Robotics and AI.

[5]  Alessandro Astolfi,et al.  Position regulation in Cartesian space of a class of inextensible soft continuum manipulators with pneumatic actuation , 2021 .

[6]  Yann Le Gorrec,et al.  Energy-Based Modeling of Ionic Polymer–Metal Composite Actuators Dedicated to the Control of Flexible Structures , 2021, IEEE/ASME Transactions on Mechatronics.

[7]  Carlo Menon,et al.  Scanning and Actuation Techniques for Cantilever-Based Fiber Optic Endoscopic Scanners—A Review , 2021, Sensors.

[8]  Brahim Tamadazte,et al.  Automatic Tip-Steering of Concentric Tube Robots in the Trachea Based on Visual SLAM , 2020, IEEE Transactions on Medical Robotics and Bionics.

[9]  Arjan van der Schaft,et al.  Port-Hamiltonian Modeling for Control , 2020, Annu. Rev. Control. Robotics Auton. Syst..

[10]  Girish Chowdhary,et al.  Energy Shaping Control of a CyberOctopus Soft Arm , 2020, 2020 59th IEEE Conference on Decision and Control (CDC).

[11]  John Till,et al.  Real-time dynamics of soft and continuum robots based on Cosserat rod models , 2019, Int. J. Robotics Res..

[12]  Yann Le Gorrec,et al.  Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct , 2018, J. Comput. Phys..

[13]  Micky Rakotondrabe,et al.  Multivariable Compensation of Hysteresis, Creep, Badly Damped Vibration, and Cross Couplings in Multiaxes Piezoelectric Actuators , 2018, IEEE Transactions on Automation Science and Engineering.

[14]  Jeremy S. Ridge,et al.  Electromechanical Model-Based Design and Testing of Fiber Scanners for Endoscopy , 2018, Journal of Medical Devices.

[15]  D. Caleb Rucker,et al.  Elastic rod dynamics: Validation of a real-time implicit approach , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[16]  Howie Choset,et al.  Continuum Robots for Medical Applications: A Survey , 2015, IEEE Transactions on Robotics.

[17]  Micky Rakotondrabe,et al.  Bouc–Wen Modeling and Feedforward Control of Multivariable Hysteresis in Piezoelectric Systems: Application to a 3-DoF Piezotube Scanner , 2015, IEEE Transactions on Control Systems Technology.

[18]  Stefano Stramigioli,et al.  Modeling and Control of Complex Physical Systems - The Port-Hamiltonian Approach , 2014 .

[19]  Matteo Cianchetti,et al.  Dynamic Model of a Multibending Soft Robot Arm Driven by Cables , 2014, IEEE Transactions on Robotics.

[20]  Holger Lang,et al.  Geometrically exact Cosserat rods with Kelvin–Voigt type viscous damping , 2013 .

[21]  D. Caleb Rucker,et al.  Statics and Dynamics of Continuum Robots With General Tendon Routing and External Loading , 2011, IEEE Transactions on Robotics.

[22]  Sucbei Moon,et al.  Semi-resonant operation of a fiber-cantilever piezotube scanner for stable optical coherence tomography endoscope imaging , 2010, Optics express.

[23]  S. Karasawa,et al.  Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope , 2006 .

[24]  Hans Zwart,et al.  Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators , 2005, SIAM J. Control. Optim..

[25]  J. Vagners,et al.  A Nonlinear State-Space Model of a Resonating Single Fiber Scanner for Tracking Control: Theory and Experiment , 2004 .

[26]  Alessandro Macchelli,et al.  Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach , 2004, SIAM J. Control. Optim..

[27]  A. Schaft,et al.  Hamiltonian formulation of distributed-parameter systems with boundary energy flow , 2002 .

[28]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[29]  Y. L. Gorrec,et al.  An irreversible port-Hamiltonian model for a class of piezoelectric actuators , 2021, IFAC-PapersOnLine.

[30]  A. Astolfi,et al.  Position Control of Soft Manipulators with Dynamic and Kinematic Uncertainties , 2020 .

[31]  John Daniel Till,et al.  On the Statics, Dynamics, and Stability of Continuum Robots: Model Formulations and Efficient Computational Schemes , 2019 .

[32]  Romeo Ortega,et al.  Interconnection and Damping Assignment Passivity-Based Control: A Survey , 2004, Eur. J. Control.

[33]  R. Ortega Passivity-based control of Euler-Lagrange systems : mechanical, electrical and electromechanical applications , 1998 .

[34]  S. Antman Nonlinear problems of elasticity , 1994 .

[35]  F. Cosserat,et al.  Sur la théorie de l'élasticité. Premier mémoire , 1896 .