Columnar connectome: toward a mathematics of brain function

Understanding brain networks is important for many fields, including neuroscience, psychology, medicine, and artificial intelligence. To address this fundamental need, there are multiple ongoing connectome projects in the United States, Europe, and Asia producing brain connection maps with resolutions at macro- and microscales. However, still lacking is a mesoscale connectome. This viewpoint (1) explains the need for a mesoscale connectome in the primate brain (the columnar connectome), (2) presents a new method for acquiring such data rapidly on a large scale, and (3) proposes how one might use such data to achieve a mathematics of brain function.

[1]  P. Konrad,et al.  Optical stimulation of neural tissue in vivo. , 2005, Optics letters.

[2]  G Tononi,et al.  Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. , 2000, Cerebral cortex.

[3]  D Purves,et al.  Development of blobs in the visual cortex of macaques , 1993, The Journal of comparative neurology.

[4]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[5]  C. Hung,et al.  Cortical processing of a brightness illusion. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Shaoqun Zeng,et al.  High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level , 2016, Nature Communications.

[7]  M. Young The organization of neural systems in the primate cerebral cortex , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[8]  Shahin Nasr,et al.  Interdigitated Color- and Disparity-Selective Columns within Human Visual Cortical Areas V2 and V3 , 2016, The Journal of Neuroscience.

[9]  J. Horton,et al.  Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[10]  E G Jones,et al.  Long-range focal collateralization of axons arising from corticocortical cells in monkey sensory-motor cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  Tatyana O. Sharpee,et al.  Decoding neural responses with minimal information loss , 2018, bioRxiv.

[12]  A. Grinvald,et al.  Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Gang Chen,et al.  Solving visual correspondence between the two eyes via domain-based population encoding in nonhuman primates , 2017, Proceedings of the National Academy of Sciences.

[14]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. III. Color , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  Karl F. Stock,et al.  A COMPUTATIONAL MODEL , 2011 .

[16]  Y. Dan,et al.  Clonally Related Visual Cortical Neurons Show Similar Stimulus Feature Selectivity , 2012, Nature.

[17]  Daniel Y. Ts’o,et al.  Whither the hypercolumn? , 2009, The Journal of physiology.

[18]  J. Craig,et al.  Shape Invariant Coding of Motion Direction in Somatosensory Cortex , 2010, PLoS biology.

[19]  Kang Cheng,et al.  Revealing human ocular dominance columns using high-resolution functional magnetic resonance imaging , 2012, NeuroImage.

[20]  P. Rakic Confusing cortical columns , 2008, Proceedings of the National Academy of Sciences.

[21]  Lawrence C. Sincich,et al.  Input to V2 Thin Stripes Arises from V1 Cytochrome Oxidase Patches , 2005, The Journal of Neuroscience.

[22]  K. Obermayer,et al.  Geometry of orientation and ocular dominance columns in monkey striate cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  Lawrence C. Sincich,et al.  Complete flatmounting of the macaque cerebral cortex , 2003, Visual Neuroscience.

[24]  Kathleen S. Rockland,et al.  Five Points on Columns , 2010, Front. Neuroanat..

[25]  D. J. Felleman,et al.  A spatially organized representation of colour in macaque cortical area V2 , 2003, Nature.

[26]  M. Rasch,et al.  Quantitative inference of population response properties across eccentricity from motion-induced maps in macaque V1. , 2013, Journal of neurophysiology.

[27]  Bevil R. Conway,et al.  Toward a Unified Theory of Visual Area V 4 , 2012 .

[28]  J. B. Levitt,et al.  Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. , 1993, Cerebral cortex.

[29]  Lawrence C. Sincich,et al.  Oriented Axon Projections in Primary Visual Cortex of the Monkey , 2001, The Journal of Neuroscience.

[30]  P. Rakic Specification of cerebral cortical areas. , 1988, Science.

[31]  N. Swindale,et al.  How different feature spaces may be represented in cortical maps , 2004, Network.

[32]  G. Goodhill,et al.  Analysis of the elastic net model applied to the formation of ocular dominance and orientation columns , 2000 .

[33]  Gang Chen,et al.  Focal infrared neural stimulation with high-field functional MRI: A rapid way to map mesoscale brain connectomes , 2019, Science Advances.

[34]  M. Bozkurt,et al.  Functional anatomy. , 1980, Equine veterinary journal.

[35]  Iwona Stepniewska,et al.  Cortical Connections of the Caudal Portion of Posterior Parietal Cortex in Prosimian Galagos. , 2016, Cerebral cortex.

[36]  A. Roe,et al.  Functionally specific optogenetic modulation in primate visual cortex , 2018, Proceedings of the National Academy of Sciences.

[37]  J. Kaas,et al.  Retinotopic patterns of connections of area 17 with visual areas V‐II and MT in macaque monkeys , 1983, The Journal of comparative neurology.

[38]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  Anna Wang Roe,et al.  Infrared neural stimulation: a new stimulation tool for central nervous system applications , 2014, Neurophotonics.

[40]  Daniel L Adams,et al.  The cortical column: a structure without a function , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[41]  A. Roe,et al.  Visual System: Functional Architecture of Area V2 , 2009 .

[42]  S. Ullman,et al.  Retinotopic Axis Specificity and Selective Clustering of Feedback Projections from V2 to V1 in the Owl Monkey , 2005, The Journal of Neuroscience.

[43]  P. Goldman-Rakic,et al.  Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey , 1995, The Journal of comparative neurology.

[44]  E. J. Tehovnik,et al.  Mapping Cortical Activity Elicited with Electrical Microstimulation Using fMRI in the Macaque , 2005, Neuron.

[45]  J. B. Levitt,et al.  Intrinsic cortical connections in macaque visual area V2: Evidence for interaction between different functional streams , 1994, The Journal of comparative neurology.

[46]  Modular activation, and suppression of neocortical activity in the monkey revealed by optical imaging , 1994, Neuroreport.

[47]  M. Sur,et al.  Subthreshold facilitation and suppression in primary visual cortex revealed by intrinsic signal imaging. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Bruce R. Rosen,et al.  Optogenetically Induced Behavioral and Functional Network Changes in Primates , 2012, Current Biology.

[49]  J. Gore,et al.  The Relationship of Anatomical and Functional Connectivity to Resting-State Connectivity in Primate Somatosensory Cortex , 2013, Neuron.

[50]  Li Min Chen,et al.  Modality maps within primate somatosensory cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[51]  H. Tamura,et al.  Mechanisms underlying orientation selectivity of neurons in the primary visual cortex of the macaque. , 1996, The Journal of physiology.

[52]  G. Dimitrakopoulos,et al.  Functional architecture , 2009, IEEE Vehicular Technology Magazine.

[53]  T. Wiesel,et al.  Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  Olaf Sporns,et al.  A spectrum of routing strategies for brain networks , 2018, PLoS Comput. Biol..

[55]  Nicole C. Rust,et al.  Selectivity and Tolerance (“Invariance”) Both Increase as Visual Information Propagates from Cortical Area V4 to IT , 2010, The Journal of Neuroscience.

[56]  H. Kennedy,et al.  A Large-Scale Circuit Mechanism for Hierarchical Dynamical Processing in the Primate Cortex , 2015, Neuron.

[57]  Pasko Rakic,et al.  Integration of neuronal clones in the radial cortical columns by EphA and ephrin-A signalling , 2009, Nature.

[58]  Takahiro Doi,et al.  Neural Activity in Cortical Area V4 Underlies Fine Disparity Discrimination , 2012, The Journal of Neuroscience.

[59]  D. Long Networks of the Brain , 2011 .

[60]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[61]  Santo Fortunato,et al.  Multiresolution Consensus Clustering in Networks , 2017, Scientific Reports.

[62]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. II. Retinotopic organization , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  Lawrence C. Sincich,et al.  Complete Pattern of Ocular Dominance Columns in Human Striate Cortex , 2010 .

[64]  G. Blasdel,et al.  Orientation selectivity, preference, and continuity in monkey striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[66]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[67]  M. Carandini,et al.  Local Origin of Field Potentials in Visual Cortex , 2009, Neuron.

[68]  Kevan A. C. Martin,et al.  Whose Cortical Column Would that Be? , 2010, Front. Neuroanat..

[69]  Gang Chen,et al.  Histological Assessment of Thermal Damage in the Brain Following Infrared Neural Stimulation , 2014, Brain Stimulation.

[70]  M. A. Carreira-Perpiñán,et al.  A computational model for the development of multiple maps in primary visual cortex. , 2005, Cerebral cortex.

[71]  Lawrence C. Sincich,et al.  V1 Interpatch Projections to V2 Thick Stripes and Pale Stripes , 2010, The Journal of Neuroscience.

[72]  Semir Zeki,et al.  Effect of background colors on the tuning of color-selective cells in monkey area V4. , 2006, Journal of neurophysiology.

[73]  Wulfram Gerstner,et al.  Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size , 2016, PLoS Comput. Biol..

[74]  Bevil R. Conway,et al.  Toward a Unified Theory of Visual Area V4 , 2012, Neuron.

[75]  N. Swindale A model for the thick, thin and pale stripe organization of primate V2 , 2007, Network.

[76]  Lawrence C. Sincich,et al.  Complete Pattern of Ocular Dominance Columns in Human Primary Visual Cortex , 2007, The Journal of Neuroscience.

[77]  J. Reynolds,et al.  Trade-off between curvature tuning and position invariance in visual area V4 , 2013, Proceedings of the National Academy of Sciences.

[78]  Ming Chen,et al.  Visual Motion Processing in Macaque V2. , 2016, Cell reports.

[79]  I. Fujita,et al.  Organization of horizontal axons in the inferior temporal cortex and primary visual cortex of the macaque monkey. , 2005, Cerebral cortex.

[80]  R. Malach,et al.  Cortical hierarchy reflected in the organization of intrinsic connections in macaque monkey visual cortex , 1993, The Journal of comparative neurology.

[81]  Anita Mahadevan-Jansen,et al.  Infrared neural stimulation of primary visual cortex in non-human primates , 2014, NeuroImage.

[82]  D. Fitzpatrick,et al.  Patterns of excitation and inhibition evoked by horizontal connections in visual cortex share a common relationship to orientation columns , 1995, Neuron.

[83]  Bevil R. Conway,et al.  Spatial Structure of Cone Inputs to Color Cells in Alert Macaque Primary Visual Cortex (V-1) , 2001, The Journal of Neuroscience.

[84]  Robert M Friedman,et al.  Study of single and multidigit activation in monkey somatosensory cortex using voltage-sensitive dye imaging , 2017, Neurophotonics.

[85]  Anna W. Roe,et al.  A Map for Horizontal Disparity in Monkey V2 , 2008, Neuron.

[86]  Frederick Federer,et al.  Two Projection Streams from Macaque V1 to the Pale Cytochrome Oxidase Stripes of V2 , 2013, The Journal of Neuroscience.

[87]  T. Wiesel,et al.  Functional architecture of cortex revealed by optical imaging of intrinsic signals , 1986, Nature.

[88]  N. Swindale How different feature spaces may be represented in cortical maps , 2004 .

[89]  A. Roe,et al.  Connectivity of neuronal populations within and between areas of primate somatosensory cortex , 2018, Brain Structure and Function.

[90]  Ming Chen,et al.  An Orientation Map for Disparity-Defined Edges in Area V4 , 2019, Cerebral cortex.

[91]  Wim Vanduffel,et al.  In Vivo Identification of Thick, Thin, and Pale Stripes of Macaque Area V2 Using Submillimeter Resolution (f)MRI at 3 T , 2019, Cerebral cortex.