Evaluation of statistical cloud parameterizations

This work is motivated by the question: how much complexity is appropriate for a cloud parameterization used in general circulation models (GCM). To approach this question, cloud parameterizations across the complexity range are explored using general circulation models and theoretical Monte-Carlo simulations. Their results are compared with high-resolution satellite observations and simulations that resolve the GCM subgrid-scale variability explicitly. A process-orientated evaluation is facilitated by GCM forecast simulations which reproduce the synoptic state. For this purpose novel methods were develop to a) conceptually relate the underlying saturation deficit probability density function (PDF) with its saturated cloudy part, b) analytically compute the vertical integrated liquid water path (LWP) variability, c) diagnose the relevant PDF-moments from cloud parameterizations, d) derive high-resolution LWP from satellite observations and e) deduce the LWP statistics by aggregating the LWP onto boxes equivalent to the GCM grid size. On this basis, this work shows that it is possible to evaluate the sub-grid scale variability of cloud parameterizations in terms of cloud variables. Differences among the PDF types increase with complexity, in particular the more advanced cloud parameterizations can make use of their double Gaussian PDF in conditions, where cumulus convection forms a separate mode with respect to the remainder of the grid-box. Therefore it is concluded that the difference between unimodal and bimodal PDFs is more important, than the shape within each mode. However the simulations and their evaluation reveals that the advanced parameterizations do not take full advantage of their abilities and their statistical relationships are broadly similar to less complex PDF shapes, while the results from observations and cloud resolving simulations indicate even more complex distributions. Therefore this work suggests that the use of less complex PDF shapes might yield a better trade-off. With increasing model resolution initial weaknesses of simpler, e.g. unimodal PDFs, will be diminished. While cloud schemes for coarseresolved models need to parameterize multiple cloud regimes per grid-box, higher spatial resolution of future GCMs will separate them better, so that the unimodal approximation improves.

[1]  A. Arakawa The Cumulus Parameterization Problem: Past, Present, and Future , 2004 .

[2]  P. Stier,et al.  Satellite observations of cloud regime development: the role of aerosol processes , 2013 .

[3]  P. Bougeault,et al.  Modeling the Trade-Wind Cumulus Boundary Layer. Part I: Testing the Ensemble Cloud Relations Against Numerical Data. , 1981 .

[4]  J. Mülmenstädt,et al.  Analysis of diagnostic climate model cloud parametrizations using large‐eddy simulations , 2015 .

[5]  Christian Jakob,et al.  An Improved Strategy for the Evaluation of Cloud Parameterizations in GCMS , 2003 .

[6]  R. Wood,et al.  Spatial variability of liquid water path in marine low cloud : The importance of mesoscale cellular convection , 2006 .

[7]  Zhaoxin Li,et al.  Sensitivity of an atmospheric general circulation model to prescribed SST changes: feedback effects associated with the simulation of cloud optical properties , 1991 .

[8]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .

[9]  W. Paul Menzel,et al.  The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..

[10]  J. Quaas Evaluating the “critical relative humidity” as a measure of subgrid‐scale variability of humidity in general circulation model cloud cover parameterizations using satellite data , 2012 .

[11]  A. Lock,et al.  Seamless Stratocumulus Simulation across the Turbulent Gray Zone , 2014 .

[12]  R. Neggers A Dual Mass Flux Framework for Boundary Layer Convection. Part II: Clouds , 2009 .

[13]  M. Tiedtke,et al.  Representation of Clouds in Large-Scale Models , 1993 .

[14]  Ákos Horváth,et al.  Global assessment of AMSR-E and MODIS cloud liquid water path retrievals in warm oceanic clouds , 2009 .

[15]  V. Masson,et al.  Evaluation of Statistical Distributions for the Parametrization of Subgrid Boundary-Layer Clouds , 2011 .

[16]  A. P. Siebesma,et al.  Cloud representation in general‐circulation models over the northern Pacific Ocean: A EUROCS intercomparison study , 2004 .

[17]  M. Khairoutdinov,et al.  A New Cloud Physics Parameterization in a Large-Eddy Simulation Model of Marine Stratocumulus , 2000 .

[18]  B. Stevens ATMOSPHERIC MOIST CONVECTION , 2005 .

[19]  E. Clothiaux,et al.  Assessing 1D atmospheric solar radiative transfer models: Interpretation and handling of unresolved clouds , 2003 .

[20]  Peter A. Bogenschutz,et al.  Assumed Probability Density Functions for Shallow and Deep Convection , 2010 .

[21]  S. Bony,et al.  Interpretation of the positive low-cloud feedback predicted by a climate model under global warming , 2013, Climate Dynamics.

[22]  Vincent E. Larson,et al.  PDF Parameterization of Boundary Layer Clouds in Models with Horizontal Grid Spacings from 2 to 16 km , 2012 .

[23]  Vincent E. Larson,et al.  A PDF-Based Model for Boundary Layer Clouds. Part II: Model Results , 2002 .

[24]  W. Paul Menzel,et al.  CLOUD TOP PROPERTIES AND CLOUD PHASE ALGORITHM THEORETICAL BASIS DOCUMENT , 2002 .

[25]  João Paulo Teixeira,et al.  An eddy‐diffusivity/mass‐flux parametrization for dry and shallow cumulus convection , 2004 .

[26]  P. Bougeault,et al.  Modeling the Trade-Wind Cumulus Boundary Layer. Part II: A High-Order One-Dimensional Model , 1981 .

[27]  S. Bony,et al.  On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates , 2013, Climate Dynamics.

[28]  A. Pier Siebesma,et al.  Stochastic Parameterization of Convective Area Fractions with a Multicloud Model Inferred from Observational Data , 2015 .

[29]  Lorenzo Tomassini,et al.  On the connection between tropical circulation, convective mixing, and climate sensitivity , 2015 .

[30]  Vincent E. Larson,et al.  Small-Scale and Mesoscale Variability of Scalars in Cloudy Boundary Layers: One-Dimensional Probability Density Functions , 2001 .

[31]  Robert F. Cahalan,et al.  Cloud Inhomogeneity from MODIS , 2005, Journal of Climate.

[32]  Uang,et al.  The NCEP Climate Forecast System Reanalysis , 2010 .

[33]  B. Stevens,et al.  Scale Dependency of Total Water Variance and Its Implication for Cloud Parameterizations , 2013 .

[34]  Vincent E. Larson,et al.  The Subgrid Importance Latin Hypercube Sampler (SILHS): a multivariate subcolumn generator , 2013 .

[35]  Günther Zängl,et al.  The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids – Part 1: Formulation and performance of the baseline version , 2013 .

[36]  Andrew Gettelman,et al.  The Evolution of Climate Sensitivity and Climate Feedbacks in the Community Atmosphere Model , 2012 .

[37]  A. Pier Siebesma,et al.  Stochastic parameterization of shallow cumulus convection estimated from high-resolution model data , 2013 .

[38]  J. Malkus On the structure of the trade wind moist layer , 1957 .

[39]  A. Arakawa,et al.  Multiscale modeling of the moist-convective atmosphere — A review , 2011 .

[40]  Brian M. Griffin,et al.  Analytic upscaling of a local microphysics scheme. Part II: Simulations , 2013 .

[41]  H. Barker,et al.  A Parameterization for Computing Grid-Averaged Solar Fluxes for Inhomogeneous Marine Boundary Layer Clouds. Part II: Validation Using Satellite Data , 1996 .

[42]  Akio Arakawa,et al.  CLOUDS AND CLIMATE: A PROBLEM THAT REFUSES TO DIE. Clouds of many , 2022 .

[43]  Sandrine Bony,et al.  Physical mechanisms controlling the initiation of convective self‐aggregation in a General Circulation Model , 2015 .

[44]  M. Köhler,et al.  A Dual Mass Flux Framework for Boundary Layer Convection. Part I: Transport , 2009 .

[45]  I. Sandu,et al.  Observed and modeled patterns of covariability between low‐level cloudiness and the structure of the trade‐wind layer , 2015 .

[46]  P. Bechtold,et al.  Improved Middle Atmosphere Climate and Forecasts in the ECMWF Model through a Nonorographic Gravity Wave Drag Parameterization , 2010 .

[47]  G. Stephens Cloud Feedbacks in the Climate System: A Critical Review , 2005 .

[48]  W. S. Lewellen,et al.  Binormal Model of Ensemble Partial Cloudiness , 1993 .

[49]  D. P. Schanen,et al.  Higher-Order Turbulence Closure and Its Impact on Climate Simulations in the Community Atmosphere Model , 2013 .

[50]  Kuan Xu,et al.  A PDF-Based Microphysics Parameterization for Simulation of Drizzling Boundary Layer Clouds , 2009 .

[51]  W. Paul Menzel,et al.  Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS , 2003, IEEE Trans. Geosci. Remote. Sens..

[52]  S. Bony,et al.  Shallowness of tropical low clouds as a predictor of climate models’ response to warming , 2016, Climate Dynamics.

[53]  Michael Buchhold,et al.  The Operational Global Icosahedral-Hexagonal Gridpoint Model GME: Description and High-Resolution Tests , 2002 .

[54]  Thijs Heus,et al.  CONTINUOUS SINGLE-COLUMN MODEL EVALUATION AT A PERMANENT METEOROLOGICAL SUPERSITE , 2012 .

[55]  V. Larson,et al.  Using Probability Density Functions to Derive Consistent Closure Relationships among Higher-Order Moments , 2005 .

[56]  H. Barker,et al.  Neglect by GCMs of subgrid‐scale horizontal variations in cloud‐droplet effective radius: A diagnostic radiative analysis , 2004 .

[57]  Roel Neggers,et al.  An Evaluation of Mass Flux Closures for Diurnal Cycles of Shallow Cumulus , 2004 .

[58]  Günther Zängl,et al.  Large eddy simulation using the general circulation model ICON , 2015 .

[59]  Paul Ginoux,et al.  CLUBB as a unified cloud parameterization: Opportunities and challenges , 2015 .

[60]  A. Seifert,et al.  Large-eddy simulation of organized precipitating trade wind cumulus clouds , 2013 .

[61]  M. Baldauf,et al.  Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities , 2011 .

[62]  E. Mlawer,et al.  Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave , 1997 .

[63]  S. Klein,et al.  The Seasonal Cycle of Low Stratiform Clouds , 1993 .

[64]  Robert Wood,et al.  The Distribution of Cloud Horizontal Sizes , 2011 .

[65]  R. Hemler,et al.  Multivariate probability density functions with dynamics in the GFDL Atmospheric General Circulation Model: Global tests , 2014 .

[66]  A. Tompkins Cloud Parametrization , 2009 .

[67]  Pierre L'Ecuyer,et al.  Implementing a random number package with splitting facilities , 1991, TOMS.

[68]  Vincent E. Larson,et al.  A PDF-Based Model for Boundary Layer Clouds. Part I: Method and Model Description , 2002 .

[69]  P. Seifert,et al.  Investigation of the adiabatic assumption for estimating cloud micro- and macrophysical properties from satellite and ground observations , 2015 .

[70]  Shian-Jiann Lin,et al.  Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. , 2009 .

[71]  Stephen A. Klein,et al.  Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels , 2012 .

[72]  João Paulo Ramos Teixeira,et al.  Tropical and Subtropical Cloud Transitions in Weather and Climate Prediction Models: The GCSS/WGNE Pacific Cross-Section Intercomparison (GPCI) , 2011 .

[73]  Martin Köhler,et al.  Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time‐scales , 2008 .

[74]  Sally A. McFarlane,et al.  Albedo bias and the horizontal variability of clouds in subtropical marine boundary layers: Observations from ships and satellites , 1999 .

[75]  P. Räisänen,et al.  Evaluation of the statistical cloud scheme in the ECHAM5 model using satellite data , 2011 .

[76]  Vincent E. Larson,et al.  Systematic Biases in the Microphysics and Thermodynamics of Numerical Models That Ignore Subgrid-Scale Variability , 2001 .

[77]  Steven Platnick,et al.  Utilizing the MODIS 1.38 μm channel for cirrus cloud optical thickness retrievals: Algorithm and retrieval uncertainties , 2010 .

[78]  I. Boutle,et al.  Spatial variability of liquid cloud and rain: observations and microphysical effects , 2014 .

[79]  C. Bretherton,et al.  Aquaplanets, Climate Sensitivity, and Low Clouds , 2008 .

[80]  Vincent E. Larson,et al.  Analytic upscaling of a local microphysics scheme. Part I: Derivation , 2013 .

[81]  A. P. Siebesma,et al.  How large-scale subsidence affects stratocumulus transitions , 2015 .

[82]  D. Rosenfeld,et al.  Decomposing aerosol cloud radiative effects into cloud cover, liquid water path and Twomey components in marine stratocumulus , 2014 .

[83]  R. Neggers Attributing the behavior of low‐level clouds in large‐scale models to subgrid‐scale parameterizations , 2015 .

[84]  C. Bretherton,et al.  Evaluation of Large-Eddy Simulations via Observations of Nocturnal Marine Stratocumulus , 2005 .

[85]  B. Stevens,et al.  Atmospheric component of the MPI‐M Earth System Model: ECHAM6 , 2013 .

[86]  D. Hartmann,et al.  The Effect of Cloud Type on Earth's Energy Balance: Global Analysis , 1992 .

[87]  G. Zängl,et al.  The ICON (ICOsahedral Non‐hydrostatic) modelling framework of DWD and MPI‐M: Description of the non‐hydrostatic dynamical core , 2015 .

[88]  C. Bretherton,et al.  Convective self‐aggregation feedbacks in near‐global cloud‐resolving simulations of an aquaplanet , 2015 .

[89]  C. Bretherton,et al.  Marine low cloud sensitivity to an idealized climate change: The CGILS LES intercomparison , 2013 .

[90]  S. Bony,et al.  Spread in model climate sensitivity traced to atmospheric convective mixing , 2014, Nature.

[91]  C. Hoose,et al.  Spatial and temporal variability of clouds and precipitation over Germany: multiscale simulations across the "gray zone" , 2015 .

[92]  Roger Davies,et al.  Plane Parallel Albedo Biases from Satellite Observations. Part I: Dependence on Resolution and Other Factors , 1998 .

[93]  G. Martin,et al.  A New Boundary Layer Mixing Scheme. Part I: Scheme Description and Single-Column Model Tests , 2000 .

[94]  R. Wood,et al.  Comparison of probability density functions for total specific humidity and saturation deficit humidity, and consequences for cloud parametrization , 2002 .

[95]  John Thuburn,et al.  Horizontal grids for global weather and climate prediction models: a review , 2012 .

[96]  A. Tompkins A Prognostic Parameterization for the Subgrid-Scale Variability of Water Vapor and Clouds in Large-Scale Models and Its Use to Diagnose Cloud Cover , 2002 .

[97]  R. Smith A scheme for predicting layer clouds and their water content in a general circulation model , 1990 .

[98]  Leo J. Donner,et al.  A Cumulus Parameterization Including Mass Fluxes, Convective Vertical Velocities, and Mesoscale Effects: Thermodynamic and Hydrological Aspects in a General Circulation Model , 2001 .

[99]  D. Randall,et al.  Stochastic generation of subgrid‐scale cloudy columns for large‐scale models , 2004 .

[100]  R. Chervin,et al.  Global distribution of total cloud cover and cloud type amounts over the ocean , 1988 .

[101]  George L. Mellor,et al.  The Gaussian Cloud Model Relations , 1977 .

[102]  A. P. Siebesma,et al.  Clouds, circulation and climate sensitivity , 2015 .

[103]  J. Kristjánsson,et al.  Condensation and Cloud Parameterization Studies with a Mesoscale Numerical Weather Prediction Model , 1989 .

[104]  B. Stevens,et al.  On the seasonal and synoptic time scale variability of the North Atlantic trades and its low-level clouds , 2015 .

[105]  M. King,et al.  Determination of the optical thickness and effective particle radius of clouds from reflected solar , 1990 .

[106]  C. Bretherton,et al.  On the Relationship between Stratiform Low Cloud Cover and Lower-Tropospheric Stability , 2006 .

[107]  Ramaswamy,et al.  The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3 , 2011 .

[108]  I. Sandu,et al.  The behavior of trade‐wind cloudiness in observations and models: The major cloud components and their variability , 2015 .

[109]  S. Bony,et al.  Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models , 2005 .

[110]  S. Klein,et al.  Unresolved spatial variability and microphysical process rates in large‐scale models , 2000 .

[111]  Robert F. Cahalan,et al.  The albedo of fractal stratocumulus clouds , 1994 .

[112]  H. Deneke,et al.  View angle dependence of MODIS liquid water path retrievals in warm oceanic clouds , 2014, Journal of geophysical research. Atmospheres : JGR.

[113]  Joao Teixeira,et al.  Probability Density Functions of Liquid Water Path and Total Water Content of Marine Boundary Layer Clouds: Implications for Cloud Parameterization , 2012 .

[114]  S. Bony,et al.  Observational Evidence for Relationships between the Degree of Aggregation of Deep Convection, Water Vapor, Surface Fluxes, and Radiation , 2012 .

[115]  W. Paul Menzel,et al.  Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS) , 1992, IEEE Trans. Geosci. Remote. Sens..

[116]  Guangyu Zhao,et al.  Cloud fraction errors for trade wind cumuli from EOS‐Terra instruments , 2006 .

[117]  Jeng-Ming Chen Turbulence-Scale Condensation Parameterization , 1991 .

[118]  Roel Neggers,et al.  Size Statistics of Cumulus Cloud Populations in Large-Eddy Simulations , 2003 .

[119]  S. D. Roode,et al.  Dynamics of cumulus rising into stratocumulus as observed during the first ‘Lagrangian’ experiment of ASTEX , 1996 .

[120]  Robert Wood,et al.  Radiative and Convective Driving of Tropical High Clouds , 2007 .

[121]  François Lott,et al.  A new subgrid‐scale orographic drag parametrization: Its formulation and testing , 1997 .

[122]  S. Klein,et al.  Using Stochastically Generated Subcolumns to Represent Cloud Structure in a Large-Scale Model , 2005 .

[123]  A. P. Siebesma,et al.  A Combined Eddy-Diffusivity Mass-Flux Approach for the Convective Boundary Layer , 2007 .

[124]  I. Musat,et al.  On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles , 2006 .

[125]  W. Cotton,et al.  Small-Scale and Mesoscale Variability in Cloudy Boundary Layers: Joint Probability Density Functions , 2002 .