Expander flows, geometric embeddings and graph partitioning

We give a O(&sqrt;log n)-approximation algorithm for the sparsest cut, edge expansion, balanced separator, and graph conductance problems. This improves the O(log n)-approximation of Leighton and Rao (1988). We use a well-known semidefinite relaxation with triangle inequality constraints. Central to our analysis is a geometric theorem about projections of point sets in Rd, whose proof makes essential use of a phenomenon called measure concentration. We also describe an interesting and natural “approximate certificate” for a graph's expansion, which involves embedding an n-node expander in it with appropriate dilation and congestion. We call this an expander flow.

[1]  George Karakostas,et al.  A better approximation ratio for the vertex cover problem , 2005, TALG.

[2]  Sanjeev Arora,et al.  A combinatorial, primal-dual approach to semidefinite programs , 2007, STOC '07.

[3]  James R. Lee,et al.  An improved approximation ratio for the minimum linear arrangement problem , 2007, Inf. Process. Lett..

[4]  Satish Rao,et al.  Graph partitioning using single commodity flows , 2006, STOC '06.

[5]  Nisheeth K. Vishnoi,et al.  Integrality gaps for sparsest cut and minimum linear arrangement problems , 2006, STOC '06.

[6]  Y. Rabani,et al.  Improved lower bounds for embeddings into L 1 , 2006, SODA 2006.

[7]  Mohammad Taghi Hajiaghayi,et al.  L22 Spreading Metrics for Vertex Ordering Problems , 2006, SODA.

[8]  Nisheeth K. Vishnoi,et al.  The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into l1 , 2005, FOCS.

[9]  A. Sinclair,et al.  Quasisymmetric embeddings, the observable diameter, and expansion properties of graphs , 2005 .

[10]  Amit Agarwal,et al.  O(√log n) approximation algorithms for min UnCut, min 2CNF deletion, and directed cut problems , 2005, STOC '05.

[11]  James R. Lee,et al.  Improved approximation algorithms for minimum-weight vertex separators , 2005, STOC '05.

[12]  James R. Lee,et al.  Euclidean distortion and the sparsest cut , 2005, STOC '05.

[13]  James R. Lee,et al.  On distance scales, embeddings, and efficient relaxations of the cut cone , 2005, SODA '05.

[14]  Anupam Gupta,et al.  Embeddings of negative-type metrics and an improved approximation to generalized sparsest cut , 2005, SODA '05.

[15]  Sanjeev Arora,et al.  O(/spl radic/log n) approximation to SPARSEST CUT in O/spl tilde/(n/sup 2/) time , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[16]  Robert Krauthgamer,et al.  Measured descent: a new embedding method for finite metrics , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[17]  Satish Rao,et al.  A Flow-Based Method for Improving the Expansion or Conductance of Graph Cuts , 2004, IPCO.

[18]  G. Schechtman Chapter 37 - Concentration, Results and Applications , 2003 .

[19]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[20]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[21]  Yuval Rabani,et al.  An O(log k) Approximate Min-Cut Max-Flow Theorem and Approximation Algorithm , 1998, SIAM J. Comput..

[22]  M. Goemans Semidefinite programming and combinatorial optimization , 1998 .

[23]  Uri Zwick,et al.  A 7/8-approximation algorithm for MAX 3SAT? , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[24]  K. Ball An elementary introduction to modern convex geometry, in flavors of geometry , 1997 .

[25]  K. Ball An Elementary Introduction to Modern Convex Geometry , 1997 .

[26]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[27]  David B. Shmoys,et al.  Cut problems and their application to divide-and-conquer , 1996 .

[28]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[29]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[30]  David R. Karger,et al.  Approximate graph coloring by semidefinite programming , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[31]  Nathan Linial,et al.  The geometry of graphs and some of its algorithmic applications , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[32]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[33]  P. Diaconis,et al.  COMPARISON THEOREMS FOR REVERSIBLE MARKOV CHAINS , 1993 .

[34]  Alistair Sinclair,et al.  Improved Bounds for Mixing Rates of Markov Chains and Multicommodity Flow , 1992, Combinatorics, Probability and Computing.

[35]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[36]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .

[37]  Farhad Shahrokhi,et al.  The maximum concurrent flow problem , 1990, JACM.

[38]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[39]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1988, Algorithms and Combinatorics.

[40]  N. Alon Eigenvalues and expanders , 1986, Comb..

[41]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[42]  Oliver Vornberger,et al.  The Complexity of Testing Whether a Graph is a Superconcentrator , 1981, Inf. Process. Lett..

[43]  P. Enflo On the nonexistence of uniform homeomorphisms betweenLp-spaces , 1970 .

[44]  J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian , 1969 .

[45]  L. Danzer,et al.  Über zwei Probleme bezüglich konvexer Körper von P. Erdös und von V. L. Klee , 1962 .