Corollary Discharge and Oculomotor Proprioception: Cortical Mechanisms for Spatially Accurate Vision.

A classic problem in psychology is understanding how the brain creates a stable and accurate representation of space for perception and action despite a constantly moving eye. Two mechanisms have been proposed to solve this problem: Herman von Helmholtz's idea that the brain uses a corollary discharge of the motor command that moves the eye to adjust the visual representation, and Sir Charles Sherrington's idea that the brain measures eye position to calculate a spatial representation. Here, we discuss the cognitive, neuropsychological, and physiological mechanisms that support each of these ideas. We propose that both are correct: A rapid corollary discharge signal remaps the visual representation before an impending saccade, computing accurate movement vectors; and an oculomotor proprioceptive signal enables the brain to construct a more accurate craniotopic representation of space that develops slowly after the saccade.

[1]  Si Wu,et al.  Perisaccadic Receptive Field Expansion in the Lateral Intraparietal Area , 2016, Neuron.

[2]  Daniel Guitton,et al.  Two distinct types of remapping in primate cortical area V4 , 2016, Nature Communications.

[3]  D. Guitton,et al.  Refuting the hypothesis that a unilateral human parietal lesion abolishes saccade corollary discharge. , 2015, Brain : a journal of neurology.

[4]  Arnulf B. A. Graf,et al.  Inferring eye position from populations of lateral intraparietal neurons , 2014, eLife.

[5]  Nicholas A. Steinmetz,et al.  Visual Space is Compressed in Prefrontal Cortex Before Eye Movements , 2014, Nature.

[6]  David C. Burr,et al.  Optimal Multimodal Integration in Spatial Localization , 2013, The Journal of Neuroscience.

[7]  Michael E Goldberg,et al.  The lateral intraparietal area codes the location of saccade targets and not the dimension of the saccades that will be made to acquire them. , 2013, Journal of neurophysiology.

[8]  Maria Concetta Morrone,et al.  Spatiotopic neural representations develop slowly across saccades , 2013, Current Biology.

[9]  P. May,et al.  Axons Giving Rise to the Palisade Endings of Feline Extraocular Muscles Display Motor Features , 2013, The Journal of Neuroscience.

[10]  Jan Theeuwes,et al.  A reinvestigation of the reference frame of the tilt-adaptation aftereffect , 2013, Scientific Reports.

[11]  Michael E. Goldberg,et al.  The Postsaccadic Unreliability of Gain Fields Renders It Unlikely that the Motor System Can Use Them to Calculate Target Position in Space , 2012, Neuron.

[12]  Karoline Lienbacher,et al.  Palisade endings and proprioception in extraocular muscles: a comparison with skeletal muscles , 2012, Biological Cybernetics.

[13]  Markus Lappe,et al.  Anticipatory Saccade Target Processing and the Presaccadic Transfer of Visual Features , 2011, The Journal of Neuroscience.

[14]  M. Mustari,et al.  Is there any sense in the Palisade endings of eye muscles? , 2011, Annals of the New York Academy of Sciences.

[15]  Robert H Wurtz,et al.  Modulation of shifting receptive field activity in frontal eye field by visual salience. , 2011, Journal of neurophysiology.

[16]  P. Cavanagh,et al.  Predictive remapping of attention across eye movements , 2011, Nature Neuroscience.

[17]  M. Goldberg,et al.  Attention, intention, and priority in the parietal lobe. , 2010, Annual review of neuroscience.

[18]  Adam N. Phillips,et al.  Predictive activity in macaque frontal eye field neurons during natural scene searching. , 2010, Journal of neurophysiology.

[19]  Daniela Balslev,et al.  The University of Birmingham (live System) Eye Position Representation in Human Anterior Parietal Cortex Eye Position Representation in Human Anterior Parietal Cortex , 2022 .

[20]  D. Melcher Predictive remapping of visual features precedes saccadic eye movements , 2007, Nature Neuroscience.

[21]  M. Goldberg,et al.  Rhesus monkeys mislocalize saccade targets flashed for 100ms around the time of a saccade , 2007, Vision Research.

[22]  Mingsha Zhang,et al.  The proprioceptive representation of eye position in monkey primary somatosensory cortex , 2007, Nature Neuroscience.

[23]  Robert H. Wurtz,et al.  Influence of the thalamus on spatial visual processing in frontal cortex , 2006, Nature.

[24]  M. Goldberg,et al.  Rhesus Monkeys Behave As If They Perceive the Duncker Illusion , 2005, Journal of Cognitive Neuroscience.

[25]  G. Rizzolatti,et al.  Space coding by premotor cortex , 2004, Experimental Brain Research.

[26]  J. Roll,et al.  Eye and neck proprioceptive messages contribute to the spatial coding of retinal input in visually oriented activities , 2004, Experimental Brain Research.

[27]  E. Holst,et al.  Das Reafferenzprinzip , 2004, Naturwissenschaften.

[28]  C. Genovese,et al.  Spatial Updating in Human Parietal Cortex , 2003, Neuron.

[29]  M. Goldberg,et al.  The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. , 2003, Journal of neurophysiology.

[30]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[31]  R. Wurtz,et al.  A Pathway in Primate Brain for Internal Monitoring of Movements , 2002, Science.

[32]  Kae Nakamura,et al.  Updating of the visual representation in monkey striate and extrastriate cortex during saccades , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[33]  M. Goldberg,et al.  Spatial processing in the monkey frontal eye field. II. Memory responses. , 2001, Journal of neurophysiology.

[34]  S. Ben Hamed,et al.  Representation of the visual field in the lateral intraparietal area of macaque monkeys: a quantitative receptive field analysis , 2001, Experimental Brain Research.

[35]  T. Sejnowski,et al.  Simulating a lesion in a basis function model of spatial representations: comparison with hemineglect. , 2001, Psychological review.

[36]  E. J. Tehovnik,et al.  Eye Movements Modulate Visual Receptive Fields of V4 Neurons , 2001, Neuron.

[37]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[38]  I. Donaldson,et al.  The functions of the proprioceptors of the eye muscles. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[39]  A P Batista,et al.  Reach plans in eye-centered coordinates. , 1999, Science.

[40]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[41]  D M Wolpert,et al.  Predicting the Consequences of Our Own Actions: The Role of Sensorimotor Context Estimation , 1998, The Journal of Neuroscience.

[42]  R F Lewis,et al.  Efference copy provides the eye position information required for visually guided reaching. , 1998, Journal of neurophysiology.

[43]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[44]  F. Bremmer,et al.  Spatial invariance of visual receptive fields in parietal cortex neurons , 1997, Nature.

[45]  M. Goldberg,et al.  Spatial processing in the monkey frontal eye field. I. Predictive visual responses. , 1997, Journal of neurophysiology.

[46]  M. Hayhoe,et al.  Reference frames in saccadic targeting , 1997, Experimental Brain Research.

[47]  L. Abbott,et al.  Invariant visual responses from attentional gain fields. , 1997, Journal of neurophysiology.

[48]  David C. Burr,et al.  Compression of visual space before saccades , 1997, Nature.

[49]  L F Dell'Osso,et al.  Saccades to remembered targets: the effects of smooth pursuit and illusory stimulus motion. , 1996, Journal of neurophysiology.

[50]  C. Galletti,et al.  Eye Position Influence on the Parieto‐occipital Area PO (V6) of the Macaque Monkey , 1995, The European journal of neuroscience.

[51]  W. Heide,et al.  Cortical control of double‐step saccades: Implications for spatial orientation , 1995, Annals of neurology.

[52]  M. Goldberg,et al.  Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. , 1995, Journal of neurophysiology.

[53]  D. Zee,et al.  Extraocular muscle proprioception functions in the control of ocular alignment and eye movement conjugacy. , 1994, Journal of neurophysiology.

[54]  D S Zee,et al.  Abnormal spatial localization with trigeminal-oculomotor synkinesis. Evidence for a proprioceptive effect. , 1993, Brain : a journal of neurology.

[55]  P Dassonville,et al.  Oculomotor localization relies on a damped representation of saccadic eye displacement in human and nonhuman primates , 1992, Visual Neuroscience.

[56]  M. Goldberg,et al.  Saccadic dysmetria in a patient with a right frontoparietal lesion. The importance of corollary discharge for accurate spatial behaviour. , 1992, Brain : a journal of neurology.

[57]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[58]  L. Stark,et al.  Ocular proprioception and efference copy in registering visual direction , 1991, Vision Research.

[59]  R. Andersen,et al.  Saccade-related activity in the lateral intraparietal area. II. Spatial properties. , 1991, Journal of neurophysiology.

[60]  G M Gauthier,et al.  Ocular muscle proprioception and visual localization of targets in man. , 1990, Brain : a journal of neurology.

[61]  C. Bruce,et al.  Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. , 1990, Journal of neurophysiology.

[62]  M. Goldberg,et al.  Representation of visuomotor space in the parietal lobe of the monkey. , 1990, Cold Spring Harbor symposia on quantitative biology.

[63]  Richard A. Andersen,et al.  A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons , 1988, Nature.

[64]  D. Robinson,et al.  Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. , 1987, Journal of neurophysiology.

[65]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[66]  D. Sparks,et al.  Corollary discharge provides accurate eye position information to the oculomotor system. , 1983, Science.

[67]  R. Andersen,et al.  The influence of the angle of gaze upon the excitability of the light- sensitive neurons of the posterior parietal cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  M J Steinbach,et al.  Spatial localization after strabismus surgery: evidence for inflow. , 1981, Science.

[69]  L E Mays,et al.  Saccades are spatially, not retinocentrically, coded. , 1980, Science.

[70]  D. Sparks,et al.  Dissociation of visual and saccade-related responses in superior colliculus neurons. , 1980, Journal of neurophysiology.

[71]  P. E. Hallett,et al.  Saccadic eye movements to flashed targets , 1976, Vision Research.

[72]  R. Wurtz,et al.  Use of an extraretinal signal by monkey superior colliculus neurons to distinguish real from self-induced stimulus movement. , 1976, Journal of neurophysiology.

[73]  R. Wurtz,et al.  Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. , 1972, Journal of neurophysiology.

[74]  A. A. Skavenski Inflow as a source of extraretinal eye position information. , 1972, Vision research.

[75]  D. Robinson Oculomotor unit behavior in the monkey. , 1970, Journal of neurophysiology.

[76]  R H Wurtz,et al.  Comparison of effects of eye movements and stimulus movements on striate cortex neurons of the monkey. , 1969, Journal of neurophysiology.

[77]  L. Stark,et al.  A Discrete Model for Eye Tracking Movements , 1963, IEEE Transactions on Military Electronics.

[78]  R. Sperry Neural basis of the spontaneous optokinetic response produced by visual inversion. , 1950, Journal of comparative and physiological psychology.

[79]  P. Daniel,et al.  Muscle spindles in human extrinsic eye muscles. , 1949, Brain : a journal of neurology.

[80]  C. Sherrington OBSERVATIONS ON THE SENSUAL RÔLE OF THE PROPRIOCEPTIVE NERVE-SUPPLY OF THE EXTRINSIC OCULAR MUSCLES , 1918 .

[81]  C. Sherrington,et al.  Receptors and afferents of the third, fourth, and sixth cranial nerves , 1910 .