On Nondeterminism, Enumeration Reducibility and Polynomial Bounds

Enumeration reducibility is a notion of relative computability between sets of natural numbers where only positive information about the sets is used or produced. Extending e-reducibility to partial functions characterises relative computability between partial functions. We define a polynomial time enumeration reducibility that retains the character of enumeration reducibility and show that it is equivalent to conjunctive non-deterministic polynomial time reducibility. We define the polynomial time e-degrees as the equivalence classes under this reducibility and investigate their structure on the recursive sets, showing in particular that the pe-degrees of the computable sets are dense and do not form a lattice, but that minimal pairs exist. We define a jump operator and use it to produce a characterisation of the polynomial hierarchy.

[1]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[2]  J. Myhill Note on degrees of partial functions , 1961 .

[3]  Manuel Lerman,et al.  Degrees of Unsolvability: Local and Global Theory , 1983 .

[4]  Alan L. Selman,et al.  Polynomial Time Enumeration Reducibility , 1978, SIAM J. Comput..

[5]  Alan L. Selman,et al.  Arithmetical Reducibilities I , 1971 .

[6]  R.E. Ladner,et al.  A Comparison of Polynomial Time Reducibilities , 1975, Theor. Comput. Sci..

[7]  Nancy A. Lynch,et al.  Comparison of polynomial-time reducibilities , 1974, STOC '74.

[8]  Theodore A. Slaman,et al.  On the Theory of the PTIME Degrees of the Recursive Sets , 1990, J. Comput. Syst. Sci..

[9]  S. Barry Cooper,et al.  Partial degrees and the density problem , 1982, Journal of Symbolic Logic.

[10]  Timothy J. Long Strong Nondeterministic Polynomial-Time Reducibilities , 1982, Theor. Comput. Sci..

[11]  José L. Balcázar,et al.  Structural Complexity I , 1995, Texts in Theoretical Computer Science An EATCS Series.

[12]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[13]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[14]  Emil L. Post,et al.  The Upper Semi-Lattice of Degrees of Recursive Unsolvability , 1954 .

[15]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[16]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[17]  Kevin McEvoy,et al.  On minimal pairs of enumeration degrees , 1985, Journal of Symbolic Logic.

[18]  Peter G. Hinman Some applications of forcing to hierarchy problems in arithmetic , 1969 .

[19]  Kate Copestake,et al.  1-genericity in the enumeration degrees , 1988, Journal of Symbolic Logic.