Synthesis of Controllers for Stylized Planar Bipedal Walking

We present a method for computing controllers for stable planar-biped walking gaits that follow a particular style. The desired style is specified with a kinematic target trajectory that may or may not be physically realizable. A nearest-neighbor controller representation is used and its free parameters are optimized using a local parameter search technique. The optimization function is constructed by integrating a mass-distance metric over fixed time intervals, which serves to measure the deviation of a simulated motion from a desired target motion. We demonstrate simulated bipedal walks having user-specified styles, walks for bipeds of varying dimensions, walks over terrain of known slopes, and walks that are robust with respect to unobserved terrain variations and modeling errors.

[1]  Kazuhito Yokoi,et al.  Biped walking pattern generation by using preview control of zero-moment point , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[2]  Katsu Yamane,et al.  Dynamics Filter - concept and implementation of online motion Generator for human figures , 2000, IEEE Trans. Robotics Autom..

[3]  Michiel van de Panne,et al.  Sensor-actuator networks , 1993, SIGGRAPH.

[4]  Chee-Meng Chew,et al.  Blind walking of a planar bipedal robot on sloped terrain , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[5]  Prahlad Vadakkepat,et al.  An Evolutionary Algorithm for Trajectory Based Gait Generation of Biped Robot , 2003 .

[6]  Andrew Y. Ng,et al.  Policy Invariance Under Reward Transformations: Theory and Application to Reward Shaping , 1999, ICML.

[7]  C. Atkeson,et al.  Minimax differential dynamic programming: application to a biped walking robot , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[8]  H. Sebastian Seung,et al.  Stochastic policy gradient reinforcement learning on a simple 3D biped , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[9]  Virginia Torczon,et al.  On the Convergence of Pattern Search Algorithms , 1997, SIAM J. Optim..

[10]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[11]  Kazuhito Yokoi,et al.  Generating whole body motions for a biped humanoid robot from captured human dances , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[12]  Jun Morimoto,et al.  Learning from demonstration and adaptation of biped locomotion , 2004, Robotics Auton. Syst..

[13]  Dana Sharon,et al.  Synthesis of Stylized Walking Controllers for Planar Bipeds , 2004 .

[14]  Alex S. Fukunaga,et al.  Further experience with controller-based automatic motion synthesis for articulated figures , 1995, TOGS.

[15]  Jerry E. Pratt,et al.  Virtual model control of a bipedal walking robot , 1997, Proceedings of International Conference on Robotics and Automation.

[16]  Jun Morimoto,et al.  A simple reinforcement learning algorithm for biped walking , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[17]  Kazuhito Yokoi,et al.  Planning walking patterns for a biped robot , 2001, IEEE Trans. Robotics Autom..

[18]  Shin Ishii,et al.  Reinforcement Learning for Biped Locomotion , 2002, ICANN.

[19]  T. Takenaka,et al.  The development of Honda humanoid robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).