A high-throughput computation framework for generalized stacking fault energies of pure metals

Abstract Generalized stacking fault energy (GSFE) is an important property in understanding the plastic deformations of metals. However, the traditional way to calculate it one by one is not efficient, this work introduces a high-throughput workflow to calculate GSFEs using density functional theory (DFT) calculations and climbing image-nudged elastic band (CI-NEB) method. Based on open-source computational tools from the Materials Project infrastructure, this computation framework automates the procedure of building perfect and faulted slab models with certain orientations, performing DFT simulations and extracting the results into database. The computed GSFEs from this work and ductility parameter based on the GSFE are consistent with reported data from previous literatures, validating the accuracy of our results and algorithm. Such a GSFE workflow may speed up the development and understanding of the mechanical properties of metals or alloys by enabling the computations of GSFEs in an automatic and high-throughput way.

[1]  Xiaozhi Wu,et al.  Ab initio calculations of generalized-stacking-fault energy surfaces and surface energies for FCC metals , 2010 .

[2]  H. Sehitoglu,et al.  Effect of nitrogen on generalized stacking fault energy and stacking fault widths in high nitrogen steels , 2006 .

[3]  Feliu Maseras,et al.  Managing the Computational Chemistry Big Data Problem: The ioChem-BD Platform , 2015, J. Chem. Inf. Model..

[4]  F. Willaime,et al.  Generalized stacking-faults and screw-dislocation core-structure in bcc iron: A comparison between ab initio calculations and empirical potentials , 2010 .

[5]  Matthew Horton,et al.  Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows , 2017 .

[6]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[7]  F. Nabarro Dislocations in a simple cubic lattice , 1947 .

[8]  A. Wilkinson,et al.  Prismatic, basal, and slip strengths of commercially pure Zr by micro-cantilever tests , 2015 .

[9]  R. Ramprasad,et al.  First-principles density functional theory study of generalized stacking faults in TiN and MgO , 2014 .

[10]  Kristin A. Persson,et al.  Surface energies of elemental crystals , 2016, Scientific Data.

[11]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[12]  Wei Chen,et al.  FireWorks: a dynamic workflow system designed for high‐throughput applications , 2015, Concurr. Comput. Pract. Exp..

[13]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[14]  S. Zaefferer,et al.  On the role of non-basal deformation mechanisms for the ductility of Mg and Mg–Y alloys , 2011 .

[15]  M. Duesbery The influence of core structure on dislocation mobility , 1969 .

[16]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[17]  Ilgyou Shin,et al.  Orbital-free density functional theory simulations of dislocations in magnesium , 2011 .

[18]  Binglun Yin,et al.  Comprehensive first-principles study of stable stacking faults in hcp metals , 2017 .

[19]  M. Mehl,et al.  Tight-binding study of stacking fault energies and the Rice criterion of ductility in the fcc metals , 2000 .

[20]  S. Curtarolo,et al.  AFLOW: An automatic framework for high-throughput materials discovery , 2012, 1308.5715.

[21]  Hong Zhu,et al.  Basal-plane stacking-fault energies of Mg alloys: A first-principles study of metallic alloying effects , 2018, Journal of Materials Science & Technology.

[22]  Geoffrey Ingram Taylor,et al.  The Mechanism of Plastic Deformation of Crystals. Part II. Comparison with Observations , 1934 .

[23]  H. Van Swygenhoven,et al.  Stacking fault energies and slip in nanocrystalline metals , 2004, Nature materials.

[24]  Xiaozhi Wu,et al.  Edge dislocation core structures in FCC metals determined from ab initio calculations combined with the improved Peierls–Nabarro equation , 2011, 1103.0148.

[25]  Gerbrand Ceder,et al.  Efficient creation and convergence of surface slabs , 2013 .

[26]  David Holec,et al.  Impact of Alloying on Stacking Fault Energies in γ-TiAl , 2017 .

[27]  Anubhav Jain,et al.  The Materials Application Programming Interface (API): A simple, flexible and efficient API for materials data based on REpresentational State Transfer (REST) principles , 2015 .

[28]  Kurt Stokbro,et al.  Improved initial guess for minimum energy path calculations. , 2014, The Journal of chemical physics.

[29]  D. Raabe,et al.  Ab initio and atomistic study of generalized stacking fault energies in Mg and Mg–Y alloys , 2013 .

[30]  R. Peierls The size of a dislocation , 1940 .

[31]  E. Clouet Screw dislocation in zirconium: an ab initio study , 2012, 1210.1082.

[32]  Shyue Ping Ong,et al.  Data-Driven First-Principles Methods for the Study and Design of Alkali Superionic Conductors , 2017 .

[33]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[34]  M. Ghazisaeidi,et al.  Core structure of a screw dislocation in Ti from density functional theory and classical potentials , 2012 .

[35]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[36]  G. Taylor The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical , 1934 .

[37]  K. Jacobsen,et al.  Density functional theory studies of screw dislocation core structures in bcc metals , 2003 .

[38]  Karsten W. Jacobsen,et al.  An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..

[39]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[40]  M. Philippe,et al.  Classification of the critical resolved shear stress in the hexagonal-close-packed materials by atomic simulation: Application to α-zirconium and α-titanium , 2011 .

[41]  J. Hafner,et al.  Shear deformation, ideal strength, and stacking fault formation of fcc metals: A density-functional study of Al and Cu , 2009 .

[42]  V. Vítek Structure of dislocation cores in metallic materials and its impact on their plastic behaviour , 1992 .

[43]  Boris Kozinsky,et al.  AiiDA: Automated Interactive Infrastructure and Database for Computational Science , 2015, ArXiv.

[44]  Huajian Gao,et al.  Generalized stacking fault energies for embedded atom FCC metals , 2000 .

[45]  Chong-yu Wang,et al.  Generalized-stacking-fault energy and dislocation properties in bcc Fe: A first-principles study , 2004 .

[46]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[47]  James R. Rice,et al.  Dislocation Nucleation from a Crack Tip" an Analysis Based on the Peierls Concept , 1991 .

[48]  V. Vítek,et al.  Intrinsic stacking faults in body-centred cubic crystals , 1968 .

[49]  Jicheng Gong,et al.  Anisotropy in the plastic flow properties of single-crystal α titanium determined from micro-cantilever beams , 2009 .

[50]  Binglun Yin,et al.  Energetics of dislocation transformations in hcp metals , 2016 .

[51]  Lin H. Yang,et al.  Chapter 92 Dislocations and Plasticity in bcc Transition Metals at High Pressure , 2009 .

[52]  Henry Wu,et al.  The MAterials Simulation Toolkit (MAST) for atomistic modeling of defects and diffusion , 2017 .

[53]  K. Kurzydłowski,et al.  Plasticity of hexagonal systems: Split slip modes and inverse Peierls relation in α-Ti , 2014 .