Multi-parametric Programming

This chapter presents an overview of the approaches to solve multi-parametric programming problems. It is organized as follows. In Section 1.1, a general multi-parametric nonlinear programming (mp-NLP) problem is formulated and the Karush-Kuhn-Tucker (KKT) optimality conditions are presented. Then, the three main groups of methods to find a local minimum of a NLP problem for a given parameter vector are reviewed (Newton-type methods, penalty function methods and direct search methods). The Basic Sensitivity Theorem, which addresses the local regularity conditions for the optimal solution as function of the parameters is reviewed. Then, algorithms to find an approximate explicit solution of mp-NLP problems are described, which are based on an orthogonal (k–d tree) partition of the parameter space. Both convex and non-convex mp-NLP problems are considered. Procedures and heuristic rules for efficient splitting of a region in the parameter space and for handling the infeasible cases are formulated. In Section 1.2, a multi-parametric quadratic programming (mp-QP) problem is formulated and two approaches to find its exact explicit solution are described.

[1]  Tor Arne Johansen,et al.  Approximate explicit receding horizon control of constrained nonlinear systems , 2004, Autom..

[2]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[3]  Efstratios N. Pistikopoulos,et al.  An Algorithm for the Solution of Multiparametric Mixed Integer Linear Programming Problems , 2000, Ann. Oper. Res..

[4]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[5]  Yang Wang,et al.  Efficient point location via subdivision walking with application to explicit MPC , 2007, 2007 European Control Conference (ECC).

[6]  Alberto Bemporad,et al.  Evaluation of piecewise affine control via binary search tree , 2003, Autom..

[7]  Tor Arne Johansen,et al.  Approximate explicit model predictive control incorporating heuristics , 2002, Proceedings. IEEE International Symposium on Computer Aided Control System Design.

[8]  A. Bemporad,et al.  Suboptimal explicit MPC via approximate multiparametric quadratic programming , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[9]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[10]  Alberto Bemporad,et al.  Convexity recognition of the union of polyhedra , 2001, Comput. Geom..

[11]  V. Torczon,et al.  Direct search methods: then and now , 2000 .

[12]  Alberto Bemporad,et al.  An algorithm for multi-parametric quadratic programming and explicit MPC solutions , 2003, Autom..

[13]  A. Jalali,et al.  Flexible piecewise function evaluation methods with application to explicit model predictive control , 2011, 2011 IEEE International Conference on Mechatronics.

[14]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[15]  Miroslav Fikar,et al.  A memory-efficient representation of explicit MPC solutions , 2011, IEEE Conference on Decision and Control and European Control Conference.

[16]  Anthony V. Fiacco,et al.  Introduction to Sensitivity and Stability Analysis in Nonlinear Programming , 2012 .

[17]  Manfred Morari,et al.  Complexity reduction of receding horizon control , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[18]  G. R. Hext,et al.  Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation , 1962 .

[19]  Stephan Dempe,et al.  Directional derivatives of the solution of a parametric nonlinear program , 1995, Math. Program..

[20]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[21]  Luis F. Domínguez,et al.  A quadratic approximation‐based algorithm for the solution of multiparametric mixed‐integer nonlinear programming problems , 2013 .

[22]  Colin Neil Jones,et al.  On the facet-to-facet property of solutions to convex parametric quadratic programs , 2006, Autom..

[23]  S. A. Piyavskii An algorithm for finding the absolute extremum of a function , 1972 .

[24]  E. Pistikopoulos,et al.  Multi-parametric programming : theory, algorithms and applications , 2007 .

[25]  Alberto Bemporad,et al.  A survey on explicit model predictive control , 2009 .

[26]  Jan M. Maciejowski,et al.  A comparison of interior point and active set methods for FPGA implementation of model predictive control , 2009, 2009 European Control Conference (ECC).

[27]  Tor Arne Johansen,et al.  Continuous Selection and Unique Polyhedral Representation of Solutions to Convex Parametric Quadratic Programs , 2007 .

[28]  Lorenzo Fagiano,et al.  Set Membership approximation theory for fast implementation of Model Predictive Control laws , 2009, Autom..

[29]  Johannes P. Schlöder,et al.  Newton-Type Methods for the Approximate Solution of Nonlinear Programming Problems in Real-Time , 2003 .

[30]  Richard H. Middleton,et al.  Networked control design for linear systems , 2003, Autom..

[31]  Graham C. Goodwin,et al.  Characterisation Of Receding Horizon Control For Constrained Linear Systems , 2003 .

[32]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[33]  Per-Olof Gutman,et al.  Explicit constraint control based on interpolation techniques for time-varying and uncertain linear discrete-time systems , 2011 .

[34]  T. Johansen On multi-parametric nonlinear programming and explicit nonlinear model predictive control , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[35]  M. Morari,et al.  Efficient evaluation of piecewise control laws defined over a large number of polyhedra , 2007, 2007 European Control Conference (ECC).

[36]  A. Grancharova,et al.  Computational Aspects of Approximate Explicit Nonlinear Model Predictive Control , 2007 .

[37]  Colin N. Jones,et al.  Optimized decision trees for point location in polytopic data sets - application to explicit MPC , 2010, Proceedings of the 2010 American Control Conference.

[38]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[39]  M. J. Box A New Method of Constrained Optimization and a Comparison With Other Methods , 1965, Comput. J..

[40]  Arun Gupta,et al.  A novel approach to multiparametric quadratic programming , 2011, Autom..

[41]  T. Johansen,et al.  Further results on multiparametric quadratic programming , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[42]  J. B. Rosen,et al.  Inequalities for Stochastic Nonlinear Programming Problems , 1964 .

[43]  Tor Arne Johansen,et al.  Combining Truncated Binary Search Tree and Direct Search for Flexible Piecewise Function Evaluation for Explicit MPC in Embedded Microcontrollers , 2011 .

[44]  Mato Baotic,et al.  Multi-Parametric Toolbox (MPT) , 2004, HSCC.

[45]  M. Kojima Strongly Stable Stationary Solutions in Nonlinear Programs. , 1980 .

[46]  Miroslav Fikar,et al.  Stabilizing polynomial approximation of explicit MPC , 2011, Autom..

[47]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[48]  Efstratios N. Pistikopoulos,et al.  Recent advances in multiparametric nonlinear programming , 2010, Comput. Chem. Eng..

[49]  Morten Hovd,et al.  Approximate explicit linear MPC via Delaunay tessellation , 2009, 2009 European Control Conference (ECC).

[50]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[51]  C. T. Kelley,et al.  Modifications of the direct algorithm , 2001 .

[52]  Marco Storace,et al.  Digital Circuit Realization of Piecewise-Affine Functions With Nonuniform Resolution: Theory and FPGA Implementation , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[53]  Tor Arne Johansen,et al.  Using hash tables to manage the time-storage complexity in a point location problem: Application to explicit model predictive control , 2011, Autom..

[54]  Daniel E. Finkel,et al.  Global optimization with the direct algorithm , 2005 .

[55]  L. Armijo Minimization of functions having Lipschitz continuous first partial derivatives. , 1966 .

[56]  Didier Dumur,et al.  A parameterized polyhedra approach for explicit constrained predictive control , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[57]  Peter Deuflhard,et al.  Newton Methods for Nonlinear Problems , 2004 .

[58]  T. Johansen,et al.  COMPLEXITY REDUCTION IN EXPLICIT LINEAR MODEL PREDICTIVE CONTROL , 2002 .

[59]  Tor Arne Johansen,et al.  Hardware Synthesis of Explicit Model Predictive Controllers , 2007, IEEE Transactions on Control Systems Technology.

[60]  T.A. Johansen,et al.  Utilizing Reachability Analysis in Point Location Problems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[61]  Alberto Bemporad,et al.  An Algorithm for Approximate Multiparametric Convex Programming , 2006, Comput. Optim. Appl..

[62]  Tor Arne Johansen,et al.  Approximate explicit constrained linear model predictive control via orthogonal search tree , 2003, IEEE Trans. Autom. Control..

[63]  Miroslav Fikar,et al.  Performance-lossless complexity reduction in Explicit MPC , 2010, 49th IEEE Conference on Decision and Control (CDC).

[64]  E. Pistikopoulos,et al.  Algorithms for the Solution of Multiparametric Mixed-Integer Nonlinear Optimization Problems , 1999 .

[65]  Donald R. Jones,et al.  Direct Global Optimization Algorithm , 2009, Encyclopedia of Optimization.

[66]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[67]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[68]  Alberto Bemporad,et al.  The explicit solution of model predictive control via multiparametric quadratic programming , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[69]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[70]  Efstratios N. Pistikopoulos,et al.  Multi-Parametric Programming: Volume 1: Theory, Algorithms, and Applications , 2007 .

[71]  Tor Arne Johansen,et al.  Explicit sub-optimal linear quadratic regulation with state and input constraints , 2002, Autom..

[72]  J. L. Nazareth,et al.  Linear and nonlinear conjugate gradient-related methods , 1996 .