Hilar mossy cells: functional identification and activity in vivo.

Network oscillations are proposed to provide the framework for the ongoing neural computations of the brain. Thus, an important aspect of understanding the functional roles of various cell classes in the brain is to understand the relationship of cellular activity to the ongoing oscillations. While many studies have characterized the firing properties of cells in the hippocampal network including granule cells, pyramidal cells and interneurons, information about the activity of dentate mossy cells in the intact brain is scant. Here we review the currently available information and describe biophysical properties and network-related firing patterns of mossy cells in vivo. These new observations will assist in the extracellular identification of this unique cell type and help elucidate their functional role in behaving animals.

[1]  M. Frotscher,et al.  “Dormant basket cell” hypothesis revisited: Relative vulnerabilities of dentate gyrus mossy cells and inhibitory interneurons after hippocampal status epilepticus in the rat , 2003, The Journal of comparative neurology.

[2]  Ivan Soltesz,et al.  Mossy cells in epilepsy: rigor mortis or vigor mortis? , 2002, Trends in Neurosciences.

[3]  H. Scharfman EPSPs of dentate gyrus granule cells during epileptiform bursts of dentate hilar "mossy" cells and area CA3 pyramidal cells in disinhibited rat hippocampal slices , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  R. S. Sloviter,et al.  Translamellar Disinhibition in the Rat Hippocampal Dentate Gyrus after Seizure-Induced Degeneration of Vulnerable Hilar Neurons , 2004, The Journal of Neuroscience.

[5]  H. Scharfman Spiny neurons of area CA3c in rat hippocampal slices have similar electrophysiological characteristics and synaptic responses despite morphological variation , 1993, Hippocampus.

[6]  H. Scharfman,et al.  Differentiation of rat dentate neurons by morphology and electrophysiology in hippocampal slices: granule cells, spiny hilar cells and aspiny 'fast-spiking' cells. , 1992, Epilepsy research. Supplement.

[7]  P. Achermann,et al.  Low-frequency (<1Hz) oscillations in the human sleep electroencephalogram , 1997, Neuroscience.

[8]  C. Léránth,et al.  Synaptic connections of neuropeptide Y (NPY) immunoreactive neurons in the hilar area of the rat hippocampus , 1990, The Journal of comparative neurology.

[9]  R. S. Sloviter Calcium‐binding protein (calbindin‐D28k) and parvalbumin immunocytochemistry: Localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity , 1989, The Journal of comparative neurology.

[10]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[11]  G Buzsáki,et al.  Interneurons in the Hippocampal Dentate Gyrus: an In Vivo intracellular Study , 1997, The European journal of neuroscience.

[12]  R. Gutiérrez The GABAergic phenotype of the “glutamatergic” granule cells of the dentate gyrus , 2003, Progress in Neurobiology.

[13]  H. Scharfman Dentate hilar cells with dendrites in the molecular layer have lower thresholds for synaptic activation by perforant path than granule cells , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  D. Amaral,et al.  Intracellular recording and labeling of mossy cells and proximal CA3 pyramidal cells in macaque monkeys , 2001, The Journal of comparative neurology.

[15]  P. Somogyi,et al.  The hippocampal CA3 network: An in vivo intracellular labeling study , 1994, The Journal of comparative neurology.

[16]  C. Köhler A projection from the deep layers of the entorhinal area to the hippocampal formation in the rat brain , 1985, Neuroscience Letters.

[17]  G. Buzsáki,et al.  Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  G. Buzsáki,et al.  Action potential threshold of hippocampal pyramidal cells in vivo is increased by recent spiking activity , 2001, Neuroscience.

[19]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[20]  G. Buzsáki,et al.  AMPA receptors in the rat and primate hippocampus: a possible absence of GLUR2/3 subunits in most interneurons , 1996, Neuroscience.

[21]  Pentti Kanerva,et al.  Sparse Distributed Memory , 1988 .

[22]  Ivan Soltesz,et al.  Rapid Deletion of Mossy Cells Does Not Result in a Hyperexcitable Dentate Gyrus: Implications for Epileptogenesis , 2004, The Journal of Neuroscience.

[23]  M Steriade,et al.  Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  K M Harris,et al.  Three‐dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus , 1992, The Journal of comparative neurology.

[25]  D. Amaral,et al.  Neurons, numbers and the hippocampal network. , 1990, Progress in brain research.

[26]  P. Somogyi,et al.  Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo , 2004, Nature Neuroscience.

[27]  G. Buzsáki,et al.  Unusual Target Selectivity of Perisomatic Inhibitory Cells in the Hilar Region of the Rat Hippocampus , 2000, The Journal of Neuroscience.

[28]  R. S. Sloviter,et al.  Calbindin-D28k immunoreactivity and selective vulnerability to ischemia in the dentate gyrus of the developing rat , 1993, Brain Research.

[29]  P. Schwartzkroin,et al.  Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo , 1996, The Journal of comparative neurology.

[30]  György Buzsáki,et al.  Hippocampal CA3 pyramidal cells selectively innervate aspiny interneurons , 2006, The European journal of neuroscience.

[31]  P. Schwartzkroin,et al.  Ultrastructural localization of neurotransmitter immunoreactivity in mossy cell axons and their synaptic targets in the rat dentate gyrus , 1997, Hippocampus.

[32]  P. Somogyi,et al.  Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo , 2003, Nature.

[33]  E. Rolls,et al.  Computational analysis of the role of the hippocampus in memory , 1994, Hippocampus.

[34]  M M Mesulam,et al.  Report of IFCN Committee on Basic Mechanisms. Basic mechanisms of cerebral rhythmic activities. , 1990, Electroencephalography and clinical neurophysiology.

[35]  H. Scharfman Characteristics of spontaneous and evoked EPSPs recorded from dentate spiny hilar cells in rat hippocampal slices. , 1993, Journal of neurophysiology.

[36]  G. Buzsáki,et al.  Electric activity in the neocortex of freely moving young and aged rats , 1988, Neuroscience.

[37]  Jozsef Csicsvari,et al.  Complementary Roles of Cholecystokinin- and Parvalbumin-Expressing GABAergic Neurons in Hippocampal Network Oscillations , 2005, The Journal of Neuroscience.

[38]  Elizabeth A. Clement,et al.  Hippocampal Slow Oscillation: A Novel EEG State and Its Coordination with Ongoing Neocortical Activity , 2006, The Journal of Neuroscience.

[39]  L. Acsády,et al.  Mossy Cells of the Rat Dentate Gyrus are lmmunoreactive for Calcitonin Gene‐related Peptide (CGRP) , 1997, European Journal of Neuroscience.

[40]  R. S. Sloviter,et al.  The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy , 1994, Annals of neurology.

[41]  P. Somogyi,et al.  Subdivisions in the Multiple GABAergic Innervation of Granule Cells in the Dentate Gyrus of the Rat Hippocampus , 1993, The European journal of neuroscience.

[42]  G. Buzsáki,et al.  Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: Activity‐dependent phase‐precession of action potentials , 1998, Hippocampus.

[43]  P. Schwartzkroin,et al.  Mossy cell axonal projections to the dentate gyrus molecular layer in the rat hippocampal slice , 1992, Hippocampus.

[44]  PA Schwartzkroin,et al.  Interneurons and inhibition in the dentate gyrus of the rat in vivo , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  R. Petralia,et al.  Light and electron immunocytochemical localization of AMPA‐selective glutamate receptors in the rat brain , 1992, The Journal of comparative neurology.

[46]  L. Nadel,et al.  The Hippocampus as a Cognitive Map , 1978 .

[47]  G. Buzsáki,et al.  High-frequency network oscillation in the hippocampus. , 1992, Science.

[48]  B. McNaughton,et al.  Behavioral correlates of theta-on and theta-off cells recorded from hippocampal formation of mature young and aged rats , 1990, Experimental Brain Research.

[49]  G. Buzsáki,et al.  Cellular bases of hippocampal EEG in the behaving rat , 1983, Brain Research Reviews.

[50]  David K. Bilkey,et al.  Variation in electrophysiology and morphology of hippocampal CA3 pyramidal cells , 1990, Brain Research.

[51]  M. Frotscher,et al.  Mossy cells of the rat fascia dentata are glutamate‐immunoreactive , 1994, Hippocampus.

[52]  G. Buzsáki Two-stage model of memory trace formation: A role for “noisy” brain states , 1989, Neuroscience.

[53]  H. Scharfman,et al.  Synaptic connections of dentate granule cells and hilar neurons: Results of paired intracellular recordings and intracellular horseradish peroxidase injections , 1990, Neuroscience.

[54]  H. Scharfman Blockade of excitation reveals inhibition of dentate spiny hilar neurons recorded in rat hippocampal slices. , 1992, Journal of neurophysiology.

[55]  J. Bourassa,et al.  The behavior of mossy cells of the rat dentate gyrus during theta oscillationsin vivo , 1993, Neuroscience.

[56]  F. L. D. Silva,et al.  Basic mechanisms of cerebral rhythmic activities , 1990 .

[57]  J. Csicsvari,et al.  Reliability and State Dependence of Pyramidal Cell–Interneuron Synapses in the Hippocampus an Ensemble Approach in the Behaving Rat , 1998, Neuron.

[58]  Mnh,et al.  Histologie du Système Nerveux de Lʼhomme et des Vertébrés , 1998 .

[59]  M. Steriade,et al.  A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  H. Scharfman Electrophysiological evidence that dentate hilar mossy cells are excitatory and innervate both granule cells and interneurons. , 1995, Journal of neurophysiology.

[61]  P. Schwartzkroin,et al.  A comparison of rat hippocampal mossy cells and CA3c pyramidal cells. , 1993, Journal of neurophysiology.

[62]  H. Scharfman,et al.  Evidence from simultaneous intracellular recordings in rat hippocampal slices that area CA3 pyramidal cells innervate dentate hilar mossy cells. , 1994, Journal of neurophysiology.

[63]  D. W. In memory of ... , 1963, Science.

[64]  M. Frotscher,et al.  Cholinergic innervation of mossy cells in the rat fascia dentata , 1999, Hippocampus.

[65]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[66]  H. Scharfman,et al.  Synchronization of area CA3 hippocampal pyramidal cells and non-granule cells of the dentate gyrus in bicuculline-treated rat hippocampal slices , 1994, Neuroscience.

[67]  G. Buzsáki,et al.  Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  D. Contreras,et al.  The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  M. Frotscher,et al.  The mossy cells of the fascia dentata: A comparative study of their fine structure and synaptic connections in rodents and primates , 1991, The Journal of comparative neurology.

[70]  György Buzsáki,et al.  Gamma frequency oscillation in the hippocampus of the rat: intracellular analysis in vivo , 1998, The European journal of neuroscience.

[71]  T. Deller The anatomical organization of the rat fascia dentata: new aspects of laminar organization as revealed by anterograde tracing with Phaseolus vulgaris-Leucoagglutinin (PHAL) , 1998, Anatomy and Embryology.

[72]  R. S. Sloviter,et al.  Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: The “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy , 1991, Hippocampus.

[73]  D. Kullmann,et al.  Monosynaptic GABAergic Signaling from Dentate to CA3 with a Pharmacological and Physiological Profile Typical of Mossy Fiber Synapses , 2001, Neuron.

[74]  T. Kosaka,et al.  Structural features of mossy cells in the hamster dentate gyrus, with special reference to somatic thorny excrescences , 2001, The Journal of comparative neurology.

[75]  M. Frotscher,et al.  Granule cell hyperexcitability in the early post‐traumatic rat dentate gyrus: the ‘irritable mossy cell’ hypothesis , 2000, The Journal of physiology.

[76]  P. Somogyi,et al.  Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus. , 1994, Journal of neurophysiology.

[77]  B. McNaughton,et al.  Hippocampal synaptic enhancement and information storage within a distributed memory system , 1987, Trends in Neurosciences.

[78]  G Buzsáki,et al.  Dentate EEG spikes and associated interneuronal population bursts in the hippocampal hilar region of the rat. , 1995, Journal of neurophysiology.

[79]  D. Amaral A golgi study of cell types in the hilar region of the hippocampus in the rat , 1978, The Journal of comparative neurology.

[80]  K. Harris,et al.  Giant miniature EPSCs at the hippocampal mossy fiber to CA3 pyramidal cell synapse are monoquantal. , 2002, Journal of neurophysiology.

[81]  H. Scharfman,et al.  Electrophysiology of morphologically identified mossy cells of the dentate hilus recorded in guinea pig hippocampal slices , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[82]  N. Barbaro,et al.  Calcium‐binding protein (calbindin‐D28K) and parvalbumin immunocytochemistry in the normal and epileptic human hippocampus , 1991, The Journal of comparative neurology.

[83]  R. S. Sloviter Feedforward and feedback inhibition of hippocampal principal cell activity evoked by perforant path stimulation: GABA‐mediated mechanisms that regulate excitability In Vivo , 1991, Hippocampus.

[84]  Sean M Montgomery,et al.  Integration and Segregation of Activity in Entorhinal-Hippocampal Subregions by Neocortical Slow Oscillations , 2006, Neuron.

[85]  H. Scharfman,et al.  Survival of dentate hilar mossy cells after pilocarpine-induced seizures and their synchronized burst discharges with area CA3 pyramidal cells , 2001, Neuroscience.

[86]  E T Rolls,et al.  Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network , 1992, Hippocampus.

[87]  T. Kosaka,et al.  Mossy cells in the mouse dentate gyrus: identification in the dorsal hilus and their distribution along the dorsoventral axis , 1999, Brain Research.

[88]  P. Schwartzkroin,et al.  Hippocampal mossy cell function: A speculative view , 1994, Hippocampus.

[89]  G. Buzsáki,et al.  Feed‐forward and feed‐back activation of the dentate gyrus in vivo during dentate spikes and sharp wave bursts , 1998, Hippocampus.

[90]  J. Csicsvari,et al.  Oscillatory Coupling of Hippocampal Pyramidal Cells and Interneurons in the Behaving Rat , 1999, The Journal of Neuroscience.

[91]  P. Schwartzkroin,et al.  Potentiation of spontaneous synaptic activity in rat mossy cells , 1992, Neuroscience Letters.