Dynamic performance analysis for non-redundant robotic manipulators in contact

This paper presents an analysis of the dynamic performance of a non-redundant robotic manipulator while in contact with a fixed environment, i.e., a rigid wall. This work extends an earlier performance characterization, the dynamic capability hypersurface, which described a manipulator's ability to accelerate and apply forces at the end-effector, given the limitations on the manipulator's motor torques. The proposed extension includes an analysis of end-effector motion constraints and friction forces and moments associated with environmental contact. This analysis is applied to a PUMA 560 manipulator.

[1]  Imin Kao,et al.  Modeling of Contact Mechanics and Friction Limit Surfaces for Soft Fingers in Robotics, with Experimental Results , 1999, Int. J. Robotics Res..

[2]  John F. Canny,et al.  Impulse-based simulation of rigid bodies , 1995, I3D '95.

[3]  Tsuneo Yoshikawa,et al.  Dynamic Manipulability of Robot Manipulators , 1985 .

[4]  Oussama Khatib,et al.  The explicit dynamic model and inertial parameters of the PUMA 560 arm , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[5]  Takayoshi Yamada,et al.  Identification of contact conditions from contaminated data of contact force and moment , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[6]  A. Bowling Modular Redundant Manipulator Design for Dynamic Performance , 2005 .

[7]  Oussama Khatib,et al.  Actuator selection for desired dynamic performance , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Y. Kim,et al.  The Definition, Determination, and Characterization of Acceleration Sets for Spatial Manipulators , 1993, Int. J. Robotics Res..

[9]  David Baraff,et al.  Fast contact force computation for nonpenetrating rigid bodies , 1994, SIGGRAPH.

[10]  Pasquale Chiacchio,et al.  Evaluation of force capabilities for redundant manipulators , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[11]  Bruce H. Krogh,et al.  The acceleration radius: a global performance measure for robotic manipulators , 1988, IEEE J. Robotics Autom..

[12]  Oussama Khatib,et al.  The motion isotropy hypersurface: a characterization of acceleration capability , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[13]  F. Pierrot,et al.  Force polytope and force ellipsoid for redundant manipulators , 1997 .

[14]  E. Haug,et al.  Dynamics of mechanical systems with Coulomb friction, stiction, impact and constraint addition-deletion—I theory , 1986 .

[15]  John J. Craig,et al.  Articulated hands: Force control and kinematic issues , 1981 .

[16]  David E. Stewart,et al.  Rigid-Body Dynamics with Friction and Impact , 2000, SIAM Rev..

[17]  D. T. Greenwood Principles of dynamics , 1965 .

[18]  John Canny,et al.  Impulse-Based Dynamic Simulation , 1995 .

[19]  Tsuneo Yoshikawa,et al.  Dynamic manipulability of robot manipulators , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[20]  J. Kenneth Salisbury,et al.  Articulated Hands , 1982 .

[21]  Yuan F. Zheng,et al.  Impact effects of biped contact with the environment , 1984, IEEE Transactions on Systems, Man, and Cybernetics.