A novel data filtering based multi-innovation stochastic gradient algorithm for Hammerstein nonlinear systems
暂无分享,去创建一个
[1] Jie Sheng,et al. Optimal filtering for multirate systems , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.
[2] Tao Tang,et al. Several gradient-based iterative estimation algorithms for a class of nonlinear systems using the filtering technique , 2014 .
[3] Peng Shi,et al. Joint state filtering and parameter estimation for linear stochastic time-delay systems , 2011, Signal Process..
[4] Huiping Li,et al. Event-triggered robust model predictive control of continuous-time nonlinear systems , 2014, Autom..
[5] Feng Ding,et al. Performance analysis of multi-innovation gradient type identification methods , 2007, Autom..
[6] Junhong Li,et al. Parameter estimation for Hammerstein CARARMA systems based on the Newton iteration , 2013, Appl. Math. Lett..
[7] Jozef Vörös,et al. Identification of nonlinear dynamic systems with input saturation and output backlash using three-block cascade models , 2014, J. Frankl. Inst..
[8] Feng Ding,et al. Recursive parameter and state estimation for an input nonlinear state space system using the hierarchical identification principle , 2015, Signal Process..
[9] F. Ding,et al. Multi-innovation stochastic gradient identification for Hammerstein controlled autoregressive autoregressive systems based on the filtering technique , 2015 .
[10] Ling Xu,et al. Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration , 2015 .
[11] Jie Ding,et al. Modified Subspace Identification for Periodically Non-uniformly Sampled Systems by Using the Lifting Technique , 2013, Circuits, Systems, and Signal Processing.
[12] J. Vörös. Identification of nonlinear cascade systems with output hysteresis based on the key term separation principle , 2015 .
[13] Er-Wei Bai,et al. How Nonlinear Parametric Wiener System Identification is Under Gaussian Inputs? , 2012, IEEE Transactions on Automatic Control.
[14] Torsten Söderström,et al. Accuracy analysis of a covariance matching approach for identifying errors-in-variables systems , 2011, Autom..
[15] Huizhong Yang,et al. Interactive parameter estimation for output error moving average systems , 2013 .
[16] Graham C. Goodwin,et al. Adaptive filtering prediction and control , 1984 .
[17] Raja Muhammad Asif Zahoor,et al. Two-stage fractional least mean square identification algorithm for parameter estimation of CARMA systems , 2015, Signal Process..
[18] E. Bai. An optimal two stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998 .
[19] Tao Tang,et al. Recursive least squares estimation algorithm applied to a class of linear-in-parameters output error moving average systems , 2014, Appl. Math. Lett..
[20] Feng Ding,et al. Identification of Hammerstein nonlinear ARMAX systems , 2005, Autom..
[21] Jozef Vörös,et al. Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities , 2007, Syst. Control. Lett..
[22] Huiping Li,et al. Robust Distributed Model Predictive Control of Constrained Continuous-Time Nonlinear Systems: A Robustness Constraint Approach , 2014, IEEE Transactions on Automatic Control.
[23] Ji Huang,et al. I2-I∞ filtering for multirate nonlinear sampled-data systems using T-S fuzzy models , 2013, Digit. Signal Process..
[24] Feng Ding,et al. States based iterative parameter estimation for a state space model with multi-state delays using decomposition , 2015, Signal Process..
[25] Kang Li,et al. Convergence of the iterative algorithm for a general Hammerstein system identification , 2010, Autom..
[26] Danilo Comminiello,et al. Nonlinear system identification using IIR Spline Adaptive Filters , 2015, Signal Process..
[27] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[28] Hazem N. Nounou,et al. State and parameter estimation for nonlinear biological phenomena modeled by S-systems , 2014, Digit. Signal Process..
[29] Feng Ding,et al. State filtering and parameter estimation for linear systems with d-step state-delay , 2014, IET Signal Process..
[30] Xin-Ping Guan,et al. Stochastic gradient with changing forgetting factor-based parameter identification for Wiener systems , 2014, Appl. Math. Lett..
[31] Feng Ding,et al. Recursive least squares parameter identification algorithms for systems with colored noise using the filtering technique and the auxilary model , 2015, Digit. Signal Process..
[32] Jie Ding,et al. Auxiliary model based parameter estimation for dual-rate output error systems with colored noise ☆ , 2013 .
[33] Er-Wei Bai. An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Autom..
[34] Baolin Liu,et al. A multi-innovation generalized extended stochastic gradient algorithm for output nonlinear autoregressive moving average systems , 2014, Appl. Math. Comput..
[35] Thomas B. Schön,et al. System identification of nonlinear state-space models , 2011, Autom..
[36] Feng Ding,et al. Data Filtering-Based Multi-innovation Stochastic Gradient Algorithm for Nonlinear Output Error Autoregressive Systems , 2016, Circuits Syst. Signal Process..
[37] Lennart Ljung,et al. Identification of Hammerstein-Wiener models , 2013, Autom..
[38] Yu Guo,et al. Robust adaptive parameter estimation of sinusoidal signals , 2015, Autom..
[39] Feng Ding,et al. Hierarchical gradient-based identification of multivariable discrete-time systems , 2005, Autom..
[40] Jozef Vörös,et al. Iterative algorithm for parameter identification of Hammerstein systems with two-segment nonlinearities , 1999, IEEE Trans. Autom. Control..
[41] Yongsong Xiao,et al. Parameter estimation for nonlinear dynamical adjustment models , 2011, Math. Comput. Model..
[42] Cary Hector,et al. Martz, John D. (ed.) The Dynamics of Change in Latin America, 2nd ed., Prentice-Hall, Englewood Cliffs, New Jersey, x + 395 p. , 1972 .
[43] Feng Ding,et al. Performance analysis of the recursive parameter estimation algorithms for multivariable Box-Jenkins systems , 2014, J. Frankl. Inst..
[44] Feng Ding,et al. Highly Efficient Identification Methods for Dual-Rate Hammerstein Systems , 2015, IEEE Transactions on Control Systems Technology.