A novel data filtering based multi-innovation stochastic gradient algorithm for Hammerstein nonlinear systems

The identification of nonlinear systems is a hot topic in the identification fields. In this paper, a data filtering based multi-innovation stochastic gradient algorithm is derived for Hammerstein nonlinear controlled autoregressive moving average systems by adopting the key-term separation principle and the data filtering technique. The proposed algorithm provides a reference to improve the identification accuracy of the nonlinear systems with colored noise. The simulation results show that the new algorithm can more effectively estimate the parameters of the Hammerstein nonlinear systems than the multi-innovation stochastic gradient algorithm.

[1]  Jie Sheng,et al.  Optimal filtering for multirate systems , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[2]  Tao Tang,et al.  Several gradient-based iterative estimation algorithms for a class of nonlinear systems using the filtering technique , 2014 .

[3]  Peng Shi,et al.  Joint state filtering and parameter estimation for linear stochastic time-delay systems , 2011, Signal Process..

[4]  Huiping Li,et al.  Event-triggered robust model predictive control of continuous-time nonlinear systems , 2014, Autom..

[5]  Feng Ding,et al.  Performance analysis of multi-innovation gradient type identification methods , 2007, Autom..

[6]  Junhong Li,et al.  Parameter estimation for Hammerstein CARARMA systems based on the Newton iteration , 2013, Appl. Math. Lett..

[7]  Jozef Vörös,et al.  Identification of nonlinear dynamic systems with input saturation and output backlash using three-block cascade models , 2014, J. Frankl. Inst..

[8]  Feng Ding,et al.  Recursive parameter and state estimation for an input nonlinear state space system using the hierarchical identification principle , 2015, Signal Process..

[9]  F. Ding,et al.  Multi-innovation stochastic gradient identification for Hammerstein controlled autoregressive autoregressive systems based on the filtering technique , 2015 .

[10]  Ling Xu,et al.  Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration , 2015 .

[11]  Jie Ding,et al.  Modified Subspace Identification for Periodically Non-uniformly Sampled Systems by Using the Lifting Technique , 2013, Circuits, Systems, and Signal Processing.

[12]  J. Vörös Identification of nonlinear cascade systems with output hysteresis based on the key term separation principle , 2015 .

[13]  Er-Wei Bai,et al.  How Nonlinear Parametric Wiener System Identification is Under Gaussian Inputs? , 2012, IEEE Transactions on Automatic Control.

[14]  Torsten Söderström,et al.  Accuracy analysis of a covariance matching approach for identifying errors-in-variables systems , 2011, Autom..

[15]  Huizhong Yang,et al.  Interactive parameter estimation for output error moving average systems , 2013 .

[16]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[17]  Raja Muhammad Asif Zahoor,et al.  Two-stage fractional least mean square identification algorithm for parameter estimation of CARMA systems , 2015, Signal Process..

[18]  E. Bai An optimal two stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998 .

[19]  Tao Tang,et al.  Recursive least squares estimation algorithm applied to a class of linear-in-parameters output error moving average systems , 2014, Appl. Math. Lett..

[20]  Feng Ding,et al.  Identification of Hammerstein nonlinear ARMAX systems , 2005, Autom..

[21]  Jozef Vörös,et al.  Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities , 2007, Syst. Control. Lett..

[22]  Huiping Li,et al.  Robust Distributed Model Predictive Control of Constrained Continuous-Time Nonlinear Systems: A Robustness Constraint Approach , 2014, IEEE Transactions on Automatic Control.

[23]  Ji Huang,et al.  I2-I∞ filtering for multirate nonlinear sampled-data systems using T-S fuzzy models , 2013, Digit. Signal Process..

[24]  Feng Ding,et al.  States based iterative parameter estimation for a state space model with multi-state delays using decomposition , 2015, Signal Process..

[25]  Kang Li,et al.  Convergence of the iterative algorithm for a general Hammerstein system identification , 2010, Autom..

[26]  Danilo Comminiello,et al.  Nonlinear system identification using IIR Spline Adaptive Filters , 2015, Signal Process..

[27]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[28]  Hazem N. Nounou,et al.  State and parameter estimation for nonlinear biological phenomena modeled by S-systems , 2014, Digit. Signal Process..

[29]  Feng Ding,et al.  State filtering and parameter estimation for linear systems with d-step state-delay , 2014, IET Signal Process..

[30]  Xin-Ping Guan,et al.  Stochastic gradient with changing forgetting factor-based parameter identification for Wiener systems , 2014, Appl. Math. Lett..

[31]  Feng Ding,et al.  Recursive least squares parameter identification algorithms for systems with colored noise using the filtering technique and the auxilary model , 2015, Digit. Signal Process..

[32]  Jie Ding,et al.  Auxiliary model based parameter estimation for dual-rate output error systems with colored noise ☆ , 2013 .

[33]  Er-Wei Bai An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Autom..

[34]  Baolin Liu,et al.  A multi-innovation generalized extended stochastic gradient algorithm for output nonlinear autoregressive moving average systems , 2014, Appl. Math. Comput..

[35]  Thomas B. Schön,et al.  System identification of nonlinear state-space models , 2011, Autom..

[36]  Feng Ding,et al.  Data Filtering-Based Multi-innovation Stochastic Gradient Algorithm for Nonlinear Output Error Autoregressive Systems , 2016, Circuits Syst. Signal Process..

[37]  Lennart Ljung,et al.  Identification of Hammerstein-Wiener models , 2013, Autom..

[38]  Yu Guo,et al.  Robust adaptive parameter estimation of sinusoidal signals , 2015, Autom..

[39]  Feng Ding,et al.  Hierarchical gradient-based identification of multivariable discrete-time systems , 2005, Autom..

[40]  Jozef Vörös,et al.  Iterative algorithm for parameter identification of Hammerstein systems with two-segment nonlinearities , 1999, IEEE Trans. Autom. Control..

[41]  Yongsong Xiao,et al.  Parameter estimation for nonlinear dynamical adjustment models , 2011, Math. Comput. Model..

[42]  Cary Hector,et al.  Martz, John D. (ed.) The Dynamics of Change in Latin America, 2nd ed., Prentice-Hall, Englewood Cliffs, New Jersey, x + 395 p. , 1972 .

[43]  Feng Ding,et al.  Performance analysis of the recursive parameter estimation algorithms for multivariable Box-Jenkins systems , 2014, J. Frankl. Inst..

[44]  Feng Ding,et al.  Highly Efficient Identification Methods for Dual-Rate Hammerstein Systems , 2015, IEEE Transactions on Control Systems Technology.