Interval estimation for the mean of lognormal data with excess zeros

Abstract This paper considered interval estimations for the mean of lognormal distribution with excess zeros. We proposed two methods for interval estimation based on an approximate generalized pivotal quantity and a fiducial quantity. Simulation results show that the fiducial approach has highly accurate coverage probability and fairly low bias.

[1]  X H Zhou,et al.  Confidence Intervals for the Mean of Diagnostic Test Charge Data Containing Zeros , 2000, Biometrics.

[2]  W. J. Owen,et al.  Estimation of the Mean for Lognormal Data Containing Zeroes and Left-Censored Values, with Applications to the Measure- ment of Worker Exposure to Air Contaminants , 1980 .

[3]  E. B. Wilson Probable Inference, the Law of Succession, and Statistical Inference , 1927 .

[4]  H. Iyer,et al.  Fiducial Generalized Confidence Intervals , 2006 .

[5]  Jan Hannig,et al.  Generalized fiducial inference for normal linear mixed models , 2012, 1211.1208.

[6]  K. Krishnamoorthy,et al.  Inference for functions of parameters in discrete distributions based on fiducial approach: Binomial and Poisson cases , 2010 .

[7]  Jan Hannig,et al.  ON GENERALIZED FIDUCIAL INFERENCE , 2009 .

[8]  Jan Hannig,et al.  Generalized fiducial inference for wavelet regression , 2009 .

[9]  T. Tony Cai,et al.  Confidence Intervals for a binomial proportion and asymptotic expansions , 2002 .

[10]  A Donner,et al.  Construction of confidence limits about effect measures: A general approach , 2008, Statistics in medicine.

[11]  Guang Yong Zou,et al.  Confidence interval estimation for lognormal data with application to health economics , 2009, Comput. Stat. Data Anal..

[12]  Samaradasa Weerahandi,et al.  Generalized Confidence Intervals , 1993 .

[13]  A. P. Dawid,et al.  The Functional-Model Basis of Fiducial Inference , 1982 .

[14]  Lili Tian Inferences on the mean of zero‐inflated lognormal data: the generalized variable approach , 2005, Statistics in medicine.

[15]  Kam-Wah Tsui,et al.  Generalized p-Values in Significance Testing of Hypotheses in the Presence of Nuisance Parameters , 1989 .

[16]  L. Brown,et al.  Interval Estimation for a Binomial Proportion , 2001 .

[17]  C. McDonald,et al.  Effects of computerized guidelines for managing heart disease in primary care , 2003, Journal of General Internal Medicine.

[18]  A. Agresti,et al.  Approximate is Better than “Exact” for Interval Estimation of Binomial Proportions , 1998 .