Holographic Algorithms

Leslie Valiant recently proposed a theory of holographic algorithms. These novel algorithms achieve exponential speed-ups for certain computational problems compared to naive algorithms for the same problems. The methodology uses Pfaffians and (planar) perfect matchings as basic computational primitives, and attempts to create exponential cancellations in computation. In this article we survey this new theory of matchgate computations and holographic algorithms.

[1]  Leslie G. Valiant,et al.  Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..

[2]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[3]  Leslie G. Valiant,et al.  Accidental Algorithms , 2006, FOCS.

[4]  A. S. Hedayat,et al.  On Theory and Applications of BIB Designs with Repeated Blocks. , 1977 .

[5]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[6]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[7]  Elliott H. Lleb Residual Entropy of Square Ice , 1967 .

[8]  Kazuo Murota,et al.  Matrices and Matroids for Systems Analysis , 2000 .

[9]  Leslie G. Valiant,et al.  Holographic Circuits , 2005, ICALP.

[10]  John M. Lewis,et al.  The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..

[11]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[12]  Jin-Yi Cai,et al.  Bases Collapse in Holographic Algorithms , 2007, Computational Complexity Conference.

[13]  Leslie G. Valiant,et al.  Completeness for Parity Problems , 2005, COCOON.

[14]  Jin-Yi Cai,et al.  Some Results on Matchgates and Holographic Algorithms , 2007, Int. J. Softw. Informatics.

[15]  E. Lieb Exact Solution of the F Model of An Antiferroelectric , 1967 .

[16]  P. W. Kasteleyn The Statistics of Dimers on a Lattice , 1961 .

[17]  László Lovász,et al.  Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.

[18]  E. Lieb Exact Solution of the Problem of the Entropy of Two-Dimensional Ice , 1967 .

[19]  L. Pauling The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement , 1935 .

[20]  Boris A. Trakhtenbrot,et al.  A Survey of Russian Approaches to Perebor (Brute-Force Searches) Algorithms , 1984, Annals of the History of Computing.

[21]  Jin-Yi Cai,et al.  On the Theory of Matchgate Computations , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[22]  Eth Zentrum,et al.  A Combinatorial Proof of Kneser's Conjecture , 2022 .

[23]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[24]  Jin-Yi Cai,et al.  On Symmetric Signatures in Holographic Algorithms , 2009, Theory of Computing Systems.

[25]  David P. Williamson,et al.  .879-approximation algorithms for MAX CUT and MAX 2SAT , 1994, STOC '94.

[26]  A. Hedayat,et al.  Note: Correction to "On Theory and Application of BIB Designs with Repeated Blocks" , 1979 .

[27]  Salil P. Vadhan,et al.  The Complexity of Counting in Sparse, Regular, and Planar Graphs , 2002, SIAM J. Comput..

[28]  Narsingh Deo,et al.  Node-Deletion NP-Complete Problems , 1979, SIAM J. Comput..

[29]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[30]  Erik Massop Hilbert's tenth problem , 2012 .

[31]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[32]  Manindra Agrawal,et al.  PRIMES is in P , 2004 .

[33]  Jin-Yi Cai,et al.  Valiant's Holant Theorem and matchgate tensors , 2007, Theor. Comput. Sci..

[34]  Leslie G. Valiant,et al.  Holographic Algorithms (Extended Abstract) , 2004, FOCS.

[35]  D. Welsh Complexity: Knots, Colourings and Counting: Link polynomials and the Tait conjectures , 1993 .

[36]  M. Jerrum Two-dimensional monomer-dimer systems are computationally intractable , 1987 .

[37]  Nathan Linial,et al.  Incidence Matrices of Subsets—A Rank Formula , 1981 .

[38]  Leonard M. Adleman,et al.  Recognizing primes in random polynomial time , 1987, STOC.

[39]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[40]  E. Lieb Exact Solution of the Two-Dimensional Slater KDP Model of a Ferroelectric , 1967 .

[41]  Jin-Yi Cai,et al.  Holographic algorithms: The power of dimensionality resolved , 2009, Theor. Comput. Sci..

[42]  Harry B. Hunt,et al.  The Complexity of Planar Counting Problems , 1998, SIAM J. Comput..

[43]  David Lichtenstein,et al.  Planar Formulae and Their Uses , 1982, SIAM J. Comput..

[44]  Yehoshua Bar-Hillel,et al.  The Intrinsic Computational Difficulty of Functions , 1969 .

[45]  Leslie G. Valiant Expressiveness of matchgates , 2002, Theor. Comput. Sci..

[46]  M. Fisher,et al.  Dimer problem in statistical mechanics-an exact result , 1961 .

[47]  Klaudia Frankfurter Computers And Intractability A Guide To The Theory Of Np Completeness , 2016 .

[48]  J. Ward,et al.  Book Review: Proceedings of the Third International Conference on Spectral and High Order Methods@@@Book Review: An introduction to computational geometry for curves and surfaces@@@Book Review: The mathematics of surfaces@@@Book Review: Algorithmic number theory, Volume I: Efficient algorithms , 1998 .

[49]  Jin-Yi Cai,et al.  Holographic algorithms: from art to science , 2007, STOC '07.

[50]  Shuo-Yen Robert Li,et al.  On the Structure of t-Designs , 1980, SIAM J. Algebraic Discret. Methods.

[51]  Siam J. CoMPtrr,et al.  FINDING A MAXIMUM CUT OF A PLANAR GRAPH IN POLYNOMIAL TIME * , 2022 .

[52]  Giuseppe Mussardo,et al.  Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics , 2009 .

[53]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..