UNDERSTANDING COMPLEX DATASETS: DATA MINING WITH MATRIX DECOMPOSITIONS

with the most likely topic assignments FIGURE 4.4 (SEE COLOR INSERT FOLLOWING PAGE 130.): The analysis of a document from Science. Document similarity was computed using Eq. (4.4); topic words were computed using Eq. (4.3). © 2009 by Taylor and Francis Group, LLC

[1]  Sebastián Ventura,et al.  An architecture for making recommendations to courseware authors using association rule mining and collaborative filtering , 2009, User Modeling and User-Adapted Interaction.

[2]  Elizabeth Ayers,et al.  IRT Modeling of Tutor Performance to Predict End-of-Year Exam Scores , 2008 .

[3]  Elisa Bertino,et al.  Multigranular spatio-temporal models: implementation challenges , 2008, GIS '08.

[4]  Xiao Ma,et al.  CISpan: Comprehensive Incremental Mining Algorithms of Closed Sequential Patterns for Multi-Versional Software Mining , 2008, SDM.

[5]  Edward Y. Chang,et al.  Parallel Spectral Clustering , 2008, ECML/PKDD.

[6]  Robert Gentleman,et al.  Bioconductor Case Studies , 2008 .

[7]  Analía Amandi,et al.  An enhanced Bayesian model to detect students' learning styles in Web-based courses , 2008, J. Comput. Assist. Learn..

[8]  Sebastián Ventura,et al.  Data mining in course management systems: Moodle case study and tutorial , 2008, Comput. Educ..

[9]  Reza Sherkat,et al.  On efficiently searching trajectories and archival data for historical similarities , 2008, Proc. VLDB Endow..

[10]  John M. Chambers,et al.  Software for Data Analysis: Programming with R , 2008 .

[11]  Gladys Castillo,et al.  Designing a Dynamic Bayesian Network for Modeling Students' Learning Styles , 2008, 2008 Eighth IEEE International Conference on Advanced Learning Technologies.

[12]  Mohamed Jemni,et al.  Automatic Recommendations for E-Learning Personalization Based on Web Usage Mining Techniques and Information Retrieval , 2008, 2008 Eighth IEEE International Conference on Advanced Learning Technologies.

[13]  Tiffany Barnes,et al.  Towards an Intelligent Tutoring System for Propositional Proof Construction , 2008 .

[14]  Tiffany Barnes,et al.  Toward Automatic Hint Generation for Logic Proof Tutoring Using Historical Student Data , 2008, Intelligent Tutoring Systems.

[15]  Rana El Kaliouby,et al.  Viewing Student Affect and Learning through Classroom Observation and Physical Sensors , 2008, Intelligent Tutoring Systems.

[16]  Albert T. Corbett,et al.  Does Help Help? Introducing the Bayesian Evaluation and Assessment Methodology , 2008, Intelligent Tutoring Systems.

[17]  Jack Mostow,et al.  How Who Should Practice: Using Learning Decomposition to Evaluate the Efficacy of Different Types of Practice for Different Types of Students , 2008, Intelligent Tutoring Systems.

[18]  Jack Mostow,et al.  A Case Study Empirical Comparison of Three Methods to Evaluate Tutorial Behaviors , 2008, Intelligent Tutoring Systems.

[19]  César Hervás-Martínez,et al.  Analyzing Rule Evaluation Measures with Educational Datasets: A Framework to Help the Teacher , 2008, EDM.

[20]  César Hervás-Martínez,et al.  Data Mining Algorithms to Classify Students , 2008, EDM.

[21]  Manolis Mavrikis,et al.  Data-driven modelling of students' interactions in an ILE , 2008, EDM.

[22]  Albert T. Corbett,et al.  Mining Free-form Spoken Responses to Tutor Prompts , 2008, EDM.

[23]  Alvaro Ortigosa,et al.  Asquare: a powerful evaluation tool for adaptive hypermedia course system , 2008, HT '08.

[24]  Katsumi Tanaka,et al.  Identification of time-varying objects on the web , 2008, JCDL '08.

[25]  Jianhong Wu,et al.  A convergence theorem for the fuzzy subspace clustering (FSC) algorithm , 2008, Pattern Recognit..

[26]  Craig Boutilier,et al.  The need for an interaction cost model in adaptive interfaces , 2008, AVI '08.

[27]  Wolfgang Nejdl,et al.  Using subspace analysis for event detection from web click-through data , 2008, WWW.

[28]  Sadaaki Miyamoto,et al.  Algorithms for Fuzzy Clustering - Methods in c-Means Clustering with Applications , 2008, Studies in Fuzziness and Soft Computing.

[29]  Wei-Hua Hao,et al.  A deflected grid-based algorithm for clustering analysis , 2008 .

[30]  Yiming Yang,et al.  An evaluation of adaptive filtering in the context of realistic task-based information exploration , 2008, Inf. Process. Manag..

[31]  Inderjit S. Dhillon,et al.  Semi-supervised graph clustering: a kernel approach , 2005, Machine Learning.

[32]  Francesco Masulli,et al.  A survey of kernel and spectral methods for clustering , 2008, Pattern Recognit..

[33]  John C. Stamper,et al.  Toward the extraction of production rules for solving logic proofs , 2008 .

[34]  Michael W. Berry,et al.  Discussion Tracking in Enron Email using PARAFAC. , 2008 .

[35]  Mark Last,et al.  Measuring Similarity Between Trajectories of Mobile Objects , 2008, Applied Pattern Recognition.

[36]  Cyril S. Ku,et al.  Design Patterns , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[37]  Carolina Ruiz,et al.  The Composition Effect: Conjuntive or Compensatory? An Analysis of Multi-Skill Math Questions in ITS , 2008, EDM.

[38]  Philippe Fournier-Viger,et al.  Evaluating Spatial Representations and Skills in a Simulator-Based Tutoring System , 2008, IEEE Transactions on Learning Technologies.

[39]  Cláudia Antunes Acquiring Background Knowledge for Intelligent Tutoring Systems , 2008, EDM.

[40]  Sebastián Ventura,et al.  Mining and Visualizing Visited Trails in Web-Based Educational Systems , 2008, EDM.

[41]  Ryan Shaun Joazeiro de Baker,et al.  Labeling Student Behavior Faster and More Precisely with Text Replays , 2008, EDM.

[42]  Eero Hyvönen,et al.  Ontology-based Disambiguation of Spatiotemporal Locations , 2008, IRSW.

[43]  Tiffany Barnes,et al.  A pilot study on logic proof tutoring using hints generated from historical student data , 2008, EDM.

[44]  Richard T. Mills,et al.  Multivariate Spatio-Temporal Clustering (MSTC) as a Data Mining Tool for Environmental Applications , 2008 .

[45]  Michel C. Desmarais,et al.  Adaptive Test Design with a Naive Bayes Framework , 2008, EDM.

[46]  Manolis Mavrikis,et al.  Diagnosing and acting on student affect: the tutor’s perspective , 2008, User Modeling and User-Adapted Interaction.

[47]  Diane J. Litman,et al.  The relative impact of student affect on performance models in a spoken dialogue tutoring system , 2008, User Modeling and User-Adapted Interaction.

[48]  Peiquan Jin,et al.  A Semantic Framework for Spatiotemporal Data Representation , 2007, 2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System.

[49]  S. Fienberg,et al.  DESCRIBING DISABILITY THROUGH INDIVIDUAL-LEVEL MIXTURE MODELS FOR MULTIVARIATE BINARY DATA. , 2007, The annals of applied statistics.

[50]  Boris G. Mirkin,et al.  Experiments for the Number of Clusters in K-Means , 2007, EPIA Workshops.

[51]  Luís Torgo,et al.  Resource-Bounded Fraud Detection , 2007, EPIA Workshops.

[52]  Marc Teboulle,et al.  A Unified Continuous Optimization Framework for Center-Based Clustering Methods , 2007, J. Mach. Learn. Res..

[53]  Foster J. Provost,et al.  Classification in Networked Data: a Toolkit and a Univariate Case Study , 2007, J. Mach. Learn. Res..

[54]  Won Suk Lee,et al.  Grid-based subspace clustering over data streams , 2007, CIKM '07.

[55]  Lei Yang,et al.  Link analysis using time series of web graphs , 2007, CIKM '07.

[56]  Markus Schneider,et al.  Modeling historical and future movements of spatio-temporal objects in moving objects databases , 2007, CIKM '07.

[57]  Nello Cristianini,et al.  Modeling sequence evolution with kernel methods , 2007, Comput. Optim. Appl..

[58]  Peiquan Jin,et al.  Ontology-driven Conceptual Modeling for Spatiotemporal Database Applications , 2007, The First International Symposium on Data, Privacy, and E-Commerce (ISDPE 2007).

[59]  Tamara G. Kolda,et al.  Efficient MATLAB Computations with Sparse and Factored Tensors , 2007, SIAM J. Sci. Comput..

[60]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[61]  Tina Eliassi-Rad,et al.  An Examination of Experimental Methodology for Classifiers of Relational Data , 2007, Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007).

[62]  Daniel A. Spielman,et al.  Spectral Graph Theory and its Applications , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[63]  Mario Vento,et al.  A Graph-Based Clustering Method and Its Applications , 2007, BVAI.

[64]  Lakhmi C. Jain,et al.  Evolution of Teaching and Learning Paradigms in Intelligent Environment , 2007 .

[65]  Kevin Chen-Chuan Chang,et al.  EntityRank: Searching Entities Directly and Holistically , 2007, VLDB.

[66]  Dan Pelleg,et al.  K -Means with Large and Noisy Constraint Sets , 2007, ECML.

[67]  Sebastián Ventura,et al.  Personalized Links Recommendation Based on Data Mining in Adaptive Educational Hypermedia Systems , 2007, EC-TEL.

[68]  Yehuda Koren,et al.  Modeling relationships at multiple scales to improve accuracy of large recommender systems , 2007, KDD '07.

[69]  Yun Chi,et al.  Structural and temporal analysis of the blogosphere through community factorization , 2007, KDD '07.

[70]  Michael K. Ng,et al.  An Entropy Weighting k-Means Algorithm for Subspace Clustering of High-Dimensional Sparse Data , 2007, IEEE Transactions on Knowledge and Data Engineering.

[71]  David B. Skillicorn,et al.  Novel information discovery for intelligence and counterterrorism , 2007, Decis. Support Syst..

[72]  Jiawei Han,et al.  Frequent Closed Sequence Mining without Candidate Maintenance , 2007, IEEE Transactions on Knowledge and Data Engineering.

[73]  Zachary A. Pardos,et al.  The Effect of Model Granularity on Student Performance Prediction Using Bayesian Networks , 2007, User Modeling.

[74]  Mihaela Cocea,et al.  Eliciting Motivation Knowledge from Log Files Towards Motivation Diagnosis for Adaptive Systems , 2007, User Modeling.

[75]  Pawan Lingras,et al.  Adaptive hyperlinks using page access sequences and minimum spanning trees , 2007, 2007 IEEE International Fuzzy Systems Conference.

[76]  Kuo Zhang,et al.  New event detection based on indexing-tree and named entity , 2007, SIGIR.

[77]  Yi Zhang,et al.  Efficient bayesian hierarchical user modeling for recommendation system , 2007, SIGIR.

[78]  Yiming Yang,et al.  Utility-based information distillation over temporally sequenced documents , 2007, SIGIR.

[79]  Enric Mor,et al.  A Three-Level Approach for Analyzing User Behavior in Ongoing Relationships , 2007, HCI.

[80]  Sofus A. Macskassy Improving Learning in Networked Data by Combining Explicit and Mined Links , 2007, AAAI.

[81]  Kalyan Moy Gupta,et al.  Cautious Inference in Collective Classification , 2007, AAAI.

[82]  Manolis Mavrikis,et al.  Towards Predictive Modelling of Student Affect from Web-Based Interactions , 2007, AIED.

[83]  Arthur C. Graesser,et al.  Mind and Body: Dialogue and Posture for Affect Detection in Learning Environments , 2007, AIED.

[84]  Beverly Park Woolf,et al.  Repairing Disengagement With Non-Invasive Interventions , 2007, AIED.

[85]  Kenneth R. Koedinger,et al.  Predicting Students' Performance with SimStudent: Learning Cognitive Skills from Observation , 2007, AIED.

[86]  Witold Pedrycz,et al.  Advances in Fuzzy Clustering and its Applications , 2007 .

[87]  John D. Lafferty,et al.  A correlated topic model of Science , 2007, 0708.3601.

[88]  Jun-Yi Shen,et al.  Grid-Based Clustering Algorithm Based on Intersecting Partition and Density Estimation , 2007, PAKDD Workshops.

[89]  Jinlin Chen,et al.  Mining contiguous sequential patterns from web logs , 2007, WWW '07.

[90]  Yizhou Sun,et al.  Causal relation of queries from temporal logs , 2007, WWW '07.

[91]  Jon M. Kleinberg,et al.  The link-prediction problem for social networks , 2007, J. Assoc. Inf. Sci. Technol..

[92]  Jennifer Neville,et al.  Relational Dependency Networks , 2007, J. Mach. Learn. Res..

[93]  Julià Minguillón,et al.  Enriching e-learning metadata through digital library usage analysis , 2007, Electron. Libr..

[94]  Shin Ishii,et al.  Parameter estimation for von Mises–Fisher distributions , 2007, Comput. Stat..

[95]  Mihai Datcu,et al.  Image Time-Series Data Mining Based on the Information-Bottleneck Principle , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[96]  Markus Breitenbach,et al.  Mixture of Watson Distributions: A Generative Model for Hyperspherical Embeddings , 2007, AISTATS.

[97]  B. Hendrickson Latent semantic analysis and Fiedler retrieval , 2007 .

[98]  François Fouss,et al.  Random-Walk Computation of Similarities between Nodes of a Graph with Application to Collaborative Recommendation , 2007, IEEE Transactions on Knowledge and Data Engineering.

[99]  Judy Sheard,et al.  WAT: a tool for classifying learning activities from a log file , 2007 .

[100]  Cristina Conati,et al.  Unsupervised and supervised machine learning in user modeling for intelligent learning environments , 2007, IUI '07.

[101]  Arindam Banerjee,et al.  Topic Models over Text Streams: A Study of Batch and Online Unsupervised Learning , 2007, SDM.

[102]  Jianhong Wu,et al.  Data clustering - theory, algorithms, and applications , 2007 .

[103]  F. Wang,et al.  CHAPTER 4 On using data mining for browsing log analysis in learning environments , 2007 .

[104]  Alfred Kobsa,et al.  The Adaptive Web, Methods and Strategies of Web Personalization , 2007, The Adaptive Web.

[105]  Heikki Mannila,et al.  Principles of Data Mining , 2001, Undergraduate Topics in Computer Science.

[106]  VARUN CHANDOLA,et al.  Outlier Detection : A Survey , 2007 .

[107]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[108]  Khaled M. Hammouda,et al.  Data Mining in E-Learning , 2007 .

[109]  Leena M. Razzaq,et al.  Developing Fine-Grained Transfer Models in the ASSISTment System , 2007 .

[110]  Mikkel N. Schmidt,et al.  Shift Invariant Sparse Coding of Image and Music Data , 2007 .

[111]  Francesc Santanach Delisau,et al.  Capturing User Behavior in e-Learning Environments , 2007, WEBIST.

[112]  Kalina Yacef,et al.  Revisiting interestingness of strong symmetric association rules in educational data , 2007 .

[113]  I. Dhillon,et al.  Matrix nearness problems in data mining , 2007 .

[114]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[115]  Tamara G. Kolda,et al.  Categories and Subject Descriptors: G.4 [Mathematics of Computing]: Mathematical Software— , 2022 .

[116]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[117]  Edward Y. Chang,et al.  Mining blog stories using community-based and temporal clustering , 2006, CIKM '06.

[118]  Bing Liu,et al.  Measuring the meaning in time series clustering of text search queries , 2006, CIKM '06.

[119]  Christian Döring,et al.  Data analysis with fuzzy clustering methods , 2006, Comput. Stat. Data Anal..

[120]  Mu Zhu,et al.  Automatic dimensionality selection from the scree plot via the use of profile likelihood , 2006, Comput. Stat. Data Anal..

[121]  Zijiang Yang,et al.  PARTCAT: A Subspace Clustering Algorithm for High Dimensional Categorical Data , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[122]  Pilar Rodríguez Marín,et al.  A Mechanism to Support Context-Based Adaptation in M-Learning , 2006, EC-TEL.

[123]  Robert C. Holte,et al.  Cost curves: An improved method for visualizing classifier performance , 2006, Machine Learning.

[124]  Sebastián Ventura,et al.  Using Rules Discovery for the Continuous Improvement of e-Learning Courses , 2006, IDEAL.

[125]  Timothy Baldwin,et al.  Semantic role labeling of prepositional phrases , 2006, TALIP.

[126]  Zijiang Yang,et al.  A Fuzzy Subspace Algorithm for Clustering High Dimensional Data , 2006, ADMA.

[127]  Xiang Ji,et al.  Document clustering with prior knowledge , 2006, SIGIR.

[128]  David Madigan,et al.  Constructing informative prior distributions from domain knowledge in text classification , 2006, SIGIR.

[129]  David R. Karger,et al.  Less is More Probabilistic Models for Retrieving Fewer Relevant Documents , 2006 .

[130]  Tamara G. Kolda,et al.  MATLAB Tensor Toolbox , 2006 .

[131]  Kurt VanLehn,et al.  The Behavior of Tutoring Systems , 2006, Int. J. Artif. Intell. Educ..

[132]  A.N. Srivastava,et al.  Enabling the discovery of recurring anomalies in aerospace problem reports using high-dimensional clustering techniques , 2006, 2006 IEEE Aerospace Conference.

[133]  Beverly Park Woolf,et al.  A Dynamic Mixture Model to Detect Student Motivation and Proficiency , 2006, AAAI.

[134]  Pilar Rodríguez Marín,et al.  The Application of Learning Styles in Both Individual and Collaborative Learning , 2006, Sixth IEEE International Conference on Advanced Learning Technologies (ICALT'06).

[135]  Marina Meila,et al.  Comparing subspace clusterings , 2006, IEEE Transactions on Knowledge and Data Engineering.

[136]  Edoardo M. Airoldi,et al.  Combining Stochastic Block Models and Mixed Membership for Statistical Network Analysis , 2006, SNA@ICML.

[137]  Paul Brna,et al.  Approximate Modelling of the Multi-dimensional Learner , 2006, Intelligent Tutoring Systems.

[138]  Beverly Park Woolf,et al.  Improving Intelligent Tutoring Systems: Using Expectation Maximization to Learn Student Skill Levels , 2006, Intelligent Tutoring Systems.

[139]  Neil T. Heffernan,et al.  Detection and Analysis of Off-Task Gaming Behavior in Intelligent Tutoring Systems , 2006, Intelligent Tutoring Systems.

[140]  Vincent Aleven,et al.  The Cognitive Tutor Authoring Tools (CTAT): Preliminary Evaluation of Efficiency Gains , 2006, Intelligent Tutoring Systems.

[141]  Charles Elkan,et al.  Clustering documents with an exponential-family approximation of the Dirichlet compound multinomial distribution , 2006, ICML.

[142]  Dale Schuurmans,et al.  Discriminative unsupervised learning of structured predictors , 2006, ICML.

[143]  John D. Lafferty,et al.  Dynamic topic models , 2006, ICML.

[144]  Barry Smyth,et al.  Temporal Rules for Predicting User Navigation in the Mobile Web , 2006, AH.

[145]  Alexey Radul,et al.  Nuggeteer: Automatic Nugget-Based Evaluation using Descriptions and Judgements , 2006, NAACL.

[146]  Jimmy J. Lin,et al.  Will Pyramids Built of Nuggets Topple Over? , 2006, NAACL.

[147]  Bülent Yener,et al.  Collective Sampling and Analysis of High Order Tensors for Chatroom Communications , 2006, ISI.

[148]  Tie-Yan Liu,et al.  Time-dependent semantic similarity measure of queries using historical click-through data , 2006, WWW '06.

[149]  Soumen Chakrabarti,et al.  Optimizing scoring functions and indexes for proximity search in type-annotated corpora , 2006, WWW '06.

[150]  Neil T. Heffernan,et al.  Addressing the testing challenge with a web-based e-assessment system that tutors as it assesses , 2006, WWW '06.

[151]  Robert H. Kushler,et al.  Exploratory Data Analysis With MATLAB® , 2006, Technometrics.

[152]  Berton H. Gunter,et al.  R Graphics , 2006, Technometrics.

[153]  Panida Songram,et al.  Closed Multidimensional Sequential Pattern Mining , 2006, Third International Conference on Information Technology: New Generations (ITNG'06).

[154]  Charlene O'Hanlon,et al.  The Private Universe , 2006, ACM Queue.

[155]  Joseph E. Beck,et al.  Using Knowledge Tracing in a Noisy Environment to Measure Student Reading Proficiencies , 2006, Int. J. Artif. Intell. Educ..

[156]  Michael W. Berry,et al.  Document clustering using nonnegative matrix factorization , 2006, Inf. Process. Manag..

[157]  Michael I. Jordan,et al.  Variational inference for Dirichlet process mixtures , 2006 .

[158]  Kurt Bryan,et al.  The $25,000,000,000 Eigenvector: The Linear Algebra behind Google , 2006, SIAM Rev..

[159]  Bülent Yener,et al.  Computational analysis of epileptic focus localization , 2006 .

[160]  C. Pahl,et al.  Data mining for the analysis of content interaction in web-based learning and training systems , 2006 .

[161]  Marc Teboulle,et al.  Grouping Multidimensional Data - Recent Advances in Clustering , 2006 .

[162]  Hayato Yamana,et al.  Generalized Sequential Pattern Mining with Item Intervals , 2006, J. Comput..

[163]  Steve Holzner Design Patterns For Dummies , 2006 .

[164]  Louis V. DiBello,et al.  31A Review of Cognitively Diagnostic Assessment and a Summary of Psychometric Models , 2006 .

[165]  Lisa Gjedde,et al.  Current developments in technology-assisted education , 2006 .

[166]  Dan Yu,et al.  Using Bayesian Networks to Implement Adaptivity in Mobile Learning , 2006, SKG.

[167]  João Gama,et al.  An Adaptive Predictive Model for Student Modeling , 2006 .

[168]  B. Junker,et al.  Do Skills Combine Additively to Predict Task Di culty in Eighth-grade Mathematics ? , 2006 .

[169]  Zachary A. Pardos,et al.  Using Fine-Grained Skill Models to Fit Student Performance with , 2006 .

[170]  Pavel Berkhin,et al.  A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.

[171]  Brett W. Bader,et al.  The TOPHITS Model for Higher-Order Web Link Analysis∗ , 2006 .

[172]  S. Ventura Soto,et al.  Using sequential pattern mining for links recommendation in adaptive hypermedia educational systems , 2006 .

[173]  Bruce Alan Hendrickson,et al.  Latent semantic analysis and fiedler embeddings. , 2006 .

[174]  Mihaela Cocea,et al.  Can Log Files Analysis Estimate Learners' Level of Motivation? , 2006, LWA.

[175]  D. Skillicorn,et al.  A data-driven protein-structure prediction algorithm , 2006 .

[176]  Brian W. Junker,et al.  Predicting end-of-year accountability assessment scores from monthly student records in an online tutoring system , 2006 .

[177]  Jian Pei,et al.  Data Mining: Concepts and Techniques, 3rd edition , 2006 .

[178]  M. Friedlander,et al.  Computing non-negative tensor factorizations , 2008, Optim. Methods Softw..

[179]  Murali Mani,et al.  Using Mixed-Effects Modeling to Compare Different Grain-Sized Skill Models , 2006 .

[180]  Lars Kai Hansen,et al.  Decomposing the time-frequency representation of EEG using non-negative matrix and multi-way factorization , 2006 .

[181]  Prithviraj Sen Lise Getoor Empirical Comparison of Approximate Inference Algorithms for Networked Data , 2006 .

[182]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[183]  M-Helene Ng Cheong Vee Understanding novice errors and error paths in Object-oriented programming through log analysis , 2006 .

[184]  David Allbritton,et al.  Tutoring Bilingual Students with an Automated Reading Tutor that Listens , 2007 .

[185]  Francisco Tirado,et al.  Modulating the Expression of Disease Genes with RNA-Based Therapy , 2006, BMC Bioinformatics.

[186]  Inderjit S. Dhillon,et al.  Generalized Nonnegative Matrix Approximations with Bregman Divergences , 2005, NIPS.

[187]  Inderjit S. Dhillon,et al.  Clustering with Bregman Divergences , 2005, J. Mach. Learn. Res..

[188]  Inderjit S. Dhillon,et al.  Clustering on the Unit Hypersphere using von Mises-Fisher Distributions , 2005, J. Mach. Learn. Res..

[189]  Charles M. Bishop,et al.  Variational Message Passing , 2005, J. Mach. Learn. Res..

[190]  Tamara G. Kolda,et al.  Higher-order Web link analysis using multilinear algebra , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[191]  Paul J. Deitel,et al.  C# for Programmers , 2005 .

[192]  S. Khalid,et al.  Classifying spatiotemporal object trajectories using unsupervised learning of basis function coefficients , 2005, VSSN@MM.

[193]  George D. Magoulas,et al.  Advances in Web-based Education: Personalized Learning Environments , 2005 .

[194]  David E. Booth,et al.  Multi-Way Analysis: Applications in the Chemical Sciences , 2005, Technometrics.

[195]  Kevyn Collins-Thompson,et al.  Predicting reading difficulty with statistical language models , 2005, J. Assoc. Inf. Sci. Technol..

[196]  Mong-Li Lee,et al.  A framework for mining topological patterns in spatio-temporal databases , 2005, CIKM '05.

[197]  Tamir Hazan,et al.  Sparse image coding using a 3D non-negative tensor factorization , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[198]  Jimmy J. Lin,et al.  Automatically Evaluating Answers to Definition Questions , 2005, HLT.

[199]  Yi Zhang,et al.  Combining Multiple Forms of Evidence While Filtering , 2005, HLT.

[200]  Soumen Chakrabarti,et al.  Enhanced Answer Type Inference from Questions using Sequential Models , 2005, HLT/EMNLP.

[201]  Ujjwal Maulik,et al.  Advanced Methods for Knowledge Discovery from Complex Data , 2005 .

[202]  Michael W. Berry,et al.  Email Surveillance Using Non-negative Matrix Factorization , 2005, Comput. Math. Organ. Theory.

[203]  Digital Library Archaeology: A Conceptual Framework for Understanding Library Use through Artifact‐Based Evaluation , 2005, The Library Quarterly.

[204]  Mária Bieliková,et al.  Improving adaptation in web-based educational hypermedia by means of knowledge discovery , 2005, HYPERTEXT '05.

[205]  Masaru Kitsuregawa,et al.  A system for visualizing and analyzing the evolution of the web with a time series of graphs , 2005, HYPERTEXT '05.

[206]  John Weinman,et al.  The use and reporting of cluster analysis in health psychology: a review. , 2005, British journal of health psychology.

[207]  Björn Karlsson,et al.  Beyond the C++ Standard Library: An Introduction to Boost , 2005 .

[208]  Harold Boley,et al.  Collaborative filtering and inference rules for context-aware learning object recommendation , 2005, Interact. Technol. Smart Educ..

[209]  Srinivasan Parthasarathy,et al.  A generalized framework for mining spatio-temporal patterns in scientific data , 2005, KDD '05.

[210]  Soumen Chakrabarti,et al.  SPIN: searching personal information networks , 2005, SIGIR '05.

[211]  Yiming Yang,et al.  Robustness of adaptive filtering methods in a cross-benchmark evaluation , 2005, SIGIR '05.

[212]  William W. Cohen,et al.  On the collective classification of email "speech acts" , 2005, SIGIR '05.

[213]  Martin J. Wainwright,et al.  MAP estimation via agreement on (hyper)trees: Message-passing and linear programming , 2005, ArXiv.

[214]  Tamir Hazan,et al.  Non-negative tensor factorization with applications to statistics and computer vision , 2005, ICML.

[215]  Anton Schwaighofer,et al.  Learning Gaussian processes from multiple tasks , 2005, ICML.

[216]  Ben Taskar,et al.  Learning structured prediction models: a large margin approach , 2005, ICML.

[217]  Andrew McCallum,et al.  Topic and Role Discovery in Social Networks , 2005, IJCAI.

[218]  Roger Nkambou,et al.  Path-Planning for Autonomous Training on Robot Manipulators in Space , 2005, IJCAI.

[219]  Zijiang Yang,et al.  A Genetic k-Modes Algorithm for Clustering Categorical Data , 2005, ADMA.

[220]  Hau-San Wong,et al.  Hidden Markov Model Based Characterization of Content Access Patterns in an e-Learning Environment , 2005, 2005 IEEE International Conference on Multimedia and Expo.

[221]  Colin Tattersall,et al.  The Learning Design Specification , 2005 .

[222]  Miin-Shen Yang,et al.  A cluster validity index for fuzzy clustering , 2005, Pattern Recognit. Lett..

[223]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[224]  Judy Sheard,et al.  Log Files for Educational Applications , 2005 .

[225]  Leen-Kiat Soh,et al.  Design, development, and validation of a learning object for CS1 , 2005, ITiCSE '05.

[226]  Joachim M. Buhmann,et al.  Learning with constrained and unlabelled data , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[227]  Ben Taskar,et al.  Discriminative learning of Markov random fields for segmentation of 3D scan data , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[228]  Mary-Anne Williams,et al.  Understanding human strategies for change: an empirical study , 2005, TARK.

[229]  Shonali Krishnaswamy,et al.  Mining data streams: a review , 2005, SGMD.

[230]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[231]  A. Zeileis,et al.  zoo: S3 Infrastructure for Regular and Irregular Time Series , 2005, math/0505527.

[232]  David B. Skillicorn Beyond Keyword Filtering for Message and Conversation Detection , 2005, ISI.

[233]  Huan Liu,et al.  CubeSVD: a novel approach to personalized Web search , 2005, WWW '05.

[234]  Oren Etzioni,et al.  A search engine for natural language applications , 2005, WWW '05.

[235]  W. Lewis Johnson,et al.  Detecting the Learner's Motivational States in An Interactive Learning Environment , 2005, AIED.

[236]  Jack Mostow,et al.  When do Students Interrupt Help? Effects of Time, Help Type, and Individual Differences , 2005, AIED.

[237]  Jack Mostow,et al.  A Generic Tool to Browse Tutor-Student Interactions: Time Will Tell! , 2005, AIED.

[238]  Peter Brusilovsky,et al.  NavEx: Providing Navigation Support for Adaptive Browsing of Annotated Code Examples , 2005, AIED.

[239]  Joseph E. Beck,et al.  Engagement tracing: using response times to model student disengagement , 2005, AIED.

[240]  Kalina Yacef,et al.  Educational Data Mining: a Case Study , 2005, AIED.

[241]  Beverly Park Woolf,et al.  Inferring learning and attitudes from a Bayesian Network of log file data , 2005, AIED.

[242]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[243]  Bülent Yener,et al.  Modeling and Multiway Analysis of Chatroom Tensors , 2005, ISI.

[244]  Boris Mirkin,et al.  Clustering For Data Mining: A Data Recovery Approach (Chapman & Hall/Crc Computer Science) , 2005 .

[245]  R. Bro,et al.  PARAFAC and missing values , 2005 .

[246]  Joemon M. Jose,et al.  How users assess Web pages for information seeking , 2005, J. Assoc. Inf. Sci. Technol..

[247]  Daniel T. Larose,et al.  Discovering Knowledge in Data: An Introduction to Data Mining , 2005 .

[248]  Cristina Conati,et al.  Affective interactions: the computer in the affective loop , 2005, IUI.

[249]  Martial Hebert,et al.  Semi-Supervised Self-Training of Object Detection Models , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[250]  Cheryl Campanella Bracken,et al.  Practical Resources for Assessing and Reporting Intercoder Reliability in Content Analysis Research Projects , 2005 .

[251]  Andrej Recommender System for Adaptive Hypermedia Applications , 2005 .

[252]  Claus Weihs,et al.  klaR Analyzing German Business Cycles , 2005, Data Analysis and Decision Support.

[253]  Issei Fujishiro,et al.  The elements of graphing data , 2005, The Visual Computer.

[254]  Jayanta Basak,et al.  Interpretable hierarchical clustering by constructing an unsupervised decision tree , 2005, IEEE Transactions on Knowledge and Data Engineering.

[255]  Robert J. Mislevy,et al.  The role of probability-based inference in an intelligent tutoring system , 2005, User Modeling and User-Adapted Interaction.

[256]  Tara Madhyastha,et al.  Data Mining Patterns of Thought , 2005 .

[257]  Jack Mostow,et al.  Interactive Demonstration of a Generic Tool to Browse Tutor-Student Interactions , 2005 .

[258]  J. Beck,et al.  An Educational Data Mining Tool to Browse Tutor-Student Interactions : Time Will Tell ! , 2005 .

[259]  Tiffany Barnes,et al.  The Q-matrix Method: Mining Student Response Data for Knowledge , 2005 .

[260]  Matthew Brand,et al.  A Random Walks Perspective on Maximizing Satisfaction and Profit , 2005, SDM.

[261]  Gediminas Adomavicius,et al.  Incorporating contextual information in recommender systems using a multidimensional approach , 2005, TOIS.

[262]  S. S. Ravi,et al.  Clustering with Constraints: Feasibility Issues and the k-Means Algorithm , 2005, SDM.

[263]  el Kaliouby,et al.  Mind-reading machines: automated inference of complex mental states , 2005 .

[264]  Peter Brusilovsky,et al.  Layered Evaluation of Topic-Based Adaptation to Student Knowledge , 2005 .

[265]  Dunja Mladenic,et al.  Visualization of Text Document Corpus , 2005, Informatica.

[266]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[267]  D. Fitzgerald,et al.  Non-negative Tensor Factorisation for Sound Source Separation , 2005 .

[268]  W. Bruce Croft,et al.  Indri: A language-model based search engine for complex queries1 , 2005 .

[269]  Anil K. Jain,et al.  Model-based Clustering With Probabilistic Constraints , 2005, SDM.

[270]  Ronald Rosenfeld,et al.  Semi-supervised learning with graphs , 2005 .

[271]  Yufei Tao,et al.  Historical spatio-temporal aggregation , 2005, TOIS.

[272]  Karen Spärck Jones A statistical interpretation of term specificity and its application in retrieval , 2021, J. Documentation.

[273]  Alex Acero,et al.  Adaptation of Maximum Entropy Capitalizer: Little Data Can Help a Lo , 2006, Comput. Speech Lang..

[274]  Jan Verbesselt,et al.  Biophysical drought metrics extraction by time series analysis of SPOT Vegetation data , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[275]  Kalina Yacef,et al.  Mining Student Data Captured from a Web-Based Tutoring Tool: Initial Exploration and Results , 2004 .

[276]  Susumu Horiguchi,et al.  Performances of Parallel Clustering Algorithm for Categorical and Mixed Data , 2004, PDCAT.

[277]  Rosni Abdullah,et al.  Parallel K-Means Clustering Algorithm on DNA Dataset , 2004, PDCAT.

[278]  Zhengdong Lu,et al.  Semi-supervised Learning with Penalized Probabilistic Clustering , 2004, NIPS.

[279]  Pietro Perona,et al.  Self-Tuning Spectral Clustering , 2004, NIPS.

[280]  Kurt VanLehn,et al.  Looking Ahead to Select Tutorial Actions: A Decision-Theoretic Approach , 2004, Int. J. Artif. Intell. Educ..

[281]  Thomas L. Griffiths,et al.  Integrating Topics and Syntax , 2004, NIPS.

[282]  Jianhong Wu,et al.  Subspace clustering for high dimensional categorical data , 2004, SKDD.

[283]  Hilbert J. Kappen,et al.  Validity Estimates for Loopy Belief Propagation on Binary Real-world Networks , 2004, NIPS.

[284]  Ulrike von Luxburg,et al.  Limits of Spectral Clustering , 2004, NIPS.

[285]  Yiming Yang,et al.  A Probabilistic Model for Online Document Clustering with Application to Novelty Detection , 2004, NIPS.

[286]  Robert Mecklenburg Managing Projects with GNU Make , 2004 .

[287]  Mohamed A. Ismail,et al.  An efficient density based clustering algorithm for large databases , 2004, 16th IEEE International Conference on Tools with Artificial Intelligence.

[288]  Mong-Li Lee,et al.  FlowMiner: finding flow patterns in spatio-temporal databases , 2004, 16th IEEE International Conference on Tools with Artificial Intelligence.

[289]  Bettina Speckmann,et al.  Efficient detection of motion patterns in spatio-temporal data sets , 2004, GIS '04.

[290]  Kurt Hornik,et al.  kernlab - An S4 Package for Kernel Methods in R , 2004 .

[291]  Keun Ho Ryu,et al.  Temporal moving pattern mining for location-based service , 2004, J. Syst. Softw..

[292]  Aidong Zhang,et al.  Cluster analysis for gene expression data: a survey , 2004, IEEE Transactions on Knowledge and Data Engineering.

[293]  David B. Skillicorn,et al.  Information discovery within organizations using the Athens system , 2004, CASCON.

[294]  Scotty D. Craig,et al.  Affect and learning: An exploratory look into the role of affect in learning with AutoTutor , 2004 .

[295]  Feng-Hsu Wang,et al.  Effective personalized recommendation based on time-framed navigation clustering and association mining , 2004, Expert Syst. Appl..

[296]  Victoria J. Hodge,et al.  A Survey of Outlier Detection Methodologies , 2004, Artificial Intelligence Review.

[297]  Tamara G. Kolda,et al.  MATLAB tensor classes for fast algorithm prototyping. , 2004 .

[298]  João Gama,et al.  Learning with Drift Detection , 2004, SBIA.

[299]  Pawan Lingras,et al.  Temporal Cluster Migration Matrices for Web Usage Mining , 2004, IEEE/WIC/ACM International Conference on Web Intelligence (WI'04).

[300]  François Fouss,et al.  The Principal Components Analysis of a Graph, and Its Relationships to Spectral Clustering , 2004, ECML.

[301]  Soumen Chakrabarti,et al.  Breaking Through the Syntax Barrier: Searching with Entities and Relations , 2004, ECML.

[302]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[303]  Shai Ben-David,et al.  Detecting Change in Data Streams , 2004, VLDB.

[304]  Cristina Conati,et al.  Evaluating a Probabilistic Model of Student Affect , 2004, Intelligent Tutoring Systems.

[305]  Vincent Aleven,et al.  Toward Tutoring Help Seeking: Applying Cognitive Modeling to Meta-cognitive Skills , 2004, Intelligent Tutoring Systems.

[306]  Neil T. Heffernan,et al.  Applying Machine Learning Techniques to Rule Generation in Intelligent Tutoring Systems , 2004, Intelligent Tutoring Systems.

[307]  Ryan Shaun Joazeiro de Baker,et al.  Detecting Student Misuse of Intelligent Tutoring Systems , 2004, Intelligent Tutoring Systems.

[308]  Neil T. Heffernan,et al.  Opening the Door to Non-programmers: Authoring Intelligent Tutor Behavior by Demonstration , 2004, Intelligent Tutoring Systems.

[309]  Permanand Mohan Reusable online learning resources: problems, solutions and opportunities , 2004, IEEE International Conference on Advanced Learning Technologies, 2004. Proceedings..

[310]  Beverly Park Woolf,et al.  Inferring Unobservable Learning Variables from Students' Help Seeking Behavior , 2004, Intelligent Tutoring Systems.

[311]  Beverly Park Woolf,et al.  Web-Based Intelligent Multimedia Tutoring for High Stakes Achievement Tests , 2004, Intelligent Tutoring Systems.

[312]  Jian-Guo Liu,et al.  Web usage mining for electronic business applications , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[313]  Patrik O. Hoyer,et al.  Non-negative Matrix Factorization with Sparseness Constraints , 2004, J. Mach. Learn. Res..

[314]  Amy Soller,et al.  Computational Modeling and Analysis of Knowledge Sharing in Collaborative Distance Learning , 2004, User Modeling and User-Adapted Interaction.

[315]  John Langford,et al.  An objective evaluation criterion for clustering , 2004, KDD.

[316]  Jennifer Neville,et al.  Why collective inference improves relational classification , 2004, KDD.

[317]  George Kollios,et al.  Mining, indexing, and querying historical spatiotemporal data , 2004, KDD.

[318]  Raymond J. Mooney,et al.  A probabilistic framework for semi-supervised clustering , 2004, KDD.

[319]  Rohini K. Srihari,et al.  Incorporating prior knowledge with weighted margin support vector machines , 2004, KDD.

[320]  R. Shen,et al.  Learning Content Recommendation Service Based-On Simple Sequencing Specification , 2004, ICWL.

[321]  KlinkenbergRalf Learning drifting concepts: Example selection vs. example weighting , 2004 .

[322]  Daniel T. Gillespie The Smartest Guys in the Room: The Amazing Rise and Scandalous Fall of Enron , 2004 .

[323]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[324]  Philip S. Yu,et al.  Text Classification by Labeling Words , 2004, AAAI.

[325]  Volker Tresp,et al.  A nonparametric hierarchical bayesian framework for information filtering , 2004, SIGIR '04.

[326]  Yi Zhang Using bayesian priors to combine classifiers for adaptive filtering , 2004, SIGIR '04.

[327]  Xiaoqiang Luo,et al.  A Mention-Synchronous Coreference Resolution Algorithm Based On the Bell Tree , 2004, ACL.

[328]  Duncan Dubugras Alcoba Ruiz,et al.  A pre-processing tool for Web usage mining in the distance education domain , 2004, Proceedings. International Database Engineering and Applications Symposium, 2004. IDEAS '04..

[329]  Aleks Jakulin,et al.  Applying Discrete PCA in Data Analysis , 2004, UAI.

[330]  Hong Chang,et al.  Locally linear metric adaptation for semi-supervised clustering , 2004, ICML.

[331]  Tomer Hertz,et al.  Boosting margin based distance functions for clustering , 2004, ICML.

[332]  Vicente Vidal,et al.  Parallel Implementation of Information Retrieval Clustering Models , 2004, VECPAR.

[333]  Dimitrios Gunopulos,et al.  Identifying similarities, periodicities and bursts for online search queries , 2004, SIGMOD '04.

[334]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[335]  George Karypis,et al.  Empirical and Theoretical Comparisons of Selected Criterion Functions for Document Clustering , 2004, Machine Learning.

[336]  Huan Liu,et al.  Subspace clustering for high dimensional data: a review , 2004, SKDD.

[337]  David B. Skillicorn,et al.  Extracting and Explaining Biological Knowledge in Microarray Data , 2004, PAKDD.

[338]  Pushpak Bhattacharyya,et al.  Is question answering an acquired skill? , 2004, WWW '04.

[339]  Joydeep Ghosh,et al.  Frequency-sensitive competitive learning for scalable balanced clustering on high-dimensional hyperspheres , 2004, IEEE Transactions on Neural Networks.

[340]  T.R. Rhoads,et al.  Learning from student data , 2004, Proceedings of the 2004 IEEE Systems and Information Engineering Design Symposium, 2004..

[341]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[342]  J. Lafferty,et al.  Mixed-membership models of scientific publications , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[343]  R. Gentleman,et al.  Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival. , 2004, Blood.

[344]  Myoung-Ho Kim,et al.  FINDIT: a fast and intelligent subspace clustering algorithm using dimension voting , 2004, Inf. Softw. Technol..

[345]  Renée J. Miller,et al.  LIMBO: Scalable Clustering of Categorical Data , 2004, EDBT.

[346]  Gerhard Weikum,et al.  HOPI: An Efficient Connection Index for Complex XML Document Collections , 2004, EDBT.

[347]  Jianhong Wu,et al.  Dynamics of projective adaptive resonance theory model: the foundation of PART algorithm , 2004, IEEE Transactions on Neural Networks.

[348]  Stuart E. Middleton,et al.  Ontological user profiling in recommender systems , 2004, TOIS.

[349]  W. Scott Spangler,et al.  Feature Weighting in k-Means Clustering , 2003, Machine Learning.

[350]  Sihem Amer-Yahia,et al.  Texquery: a full-text search extension to xquery , 2004, WWW '04.

[351]  George D. Magoulas,et al.  Personalizing the Interaction in a Web-based Educational Hypermedia System: the case of INSPIRE , 2003, User Modeling and User-Adapted Interaction.

[352]  Yiming Yang,et al.  A Study of Approaches to Hypertext Categorization , 2002, Journal of Intelligent Information Systems.

[353]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[354]  Gunnar Rätsch,et al.  Soft Margins for AdaBoost , 2001, Machine Learning.

[355]  Tom Fawcett,et al.  Robust Classification for Imprecise Environments , 2000, Machine Learning.

[356]  Sebastian Thrun,et al.  Text Classification from Labeled and Unlabeled Documents using EM , 2000, Machine Learning.

[357]  Michael J. Pazzani,et al.  A Framework for Collaborative, Content-Based and Demographic Filtering , 1999, Artificial Intelligence Review.

[358]  Hans-Peter Kriegel,et al.  A Fast Parallel Clustering Algorithm for Large Spatial Databases , 1999, Data Mining and Knowledge Discovery.

[359]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[360]  Daniel Boley,et al.  Principal Direction Divisive Partitioning , 1998, Data Mining and Knowledge Discovery.

[361]  Joshua Zhexue Huang,et al.  Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values , 1998, Data Mining and Knowledge Discovery.

[362]  Hans-Peter Kriegel,et al.  Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications , 1998, Data Mining and Knowledge Discovery.

[363]  Pedro M. Domingos,et al.  On the Optimality of the Simple Bayesian Classifier under Zero-One Loss , 1997, Machine Learning.

[364]  David W. Aha,et al.  A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms , 1997, Artificial Intelligence Review.

[365]  Andrew W. Moore,et al.  Locally Weighted Learning , 1997, Artificial Intelligence Review.

[366]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[367]  R. Schapire The Strength of Weak Learnability , 1990, Machine Learning.

[368]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[369]  Stephen Grossberg,et al.  Adaptive pattern classification and universal recoding: II. Feedback, expectation, olfaction, illusions , 1976, Biological Cybernetics.

[370]  S. Grossberg,et al.  Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors , 1976, Biological Cybernetics.

[371]  Kunihiko Fukushima,et al.  Cognitron: A self-organizing multilayered neural network , 1975, Biological Cybernetics.

[372]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[373]  Inderjit S. Dhillon,et al.  Concept Decompositions for Large Sparse Text Data Using Clustering , 2004, Machine Learning.

[374]  Robert A. Maksimchuk,et al.  UML for mere mortals , 2004 .

[375]  Sean M. McNee,et al.  Enhancing digital libraries with TechLens+ , 2004, JCDL.

[376]  DIMITRIOS PIERRAKOS,et al.  User Modeling and User-Adapted Interaction , 1994, User Modeling and User-Adapted Interaction.

[377]  D. Kibler,et al.  Instance-based learning algorithms , 2004, Machine Learning.

[378]  B. Hanlon DEPARTMENT OF COMMERCE , 2004 .

[379]  Sebastián Ventura,et al.  Knowledge Discovery with Genetic Programming for Providing Feedback to Courseware Authors , 2004, User Modeling and User-Adapted Interaction.

[380]  Lars Bollen,et al.  Bootstrapping Novice Data: Semi-Automated Tutor Authoring Using Student Log Files , 2004 .

[381]  David B. Skillicorn,et al.  The Athens System for Novel Information Discovery , 2004 .

[382]  Jack Mostow,et al.  Improving the Help Selection Policy in a Reading Tutor that Listens , 2004 .

[383]  MOODY T. CHU ON THE STATISTICAL MEANING OF TRUNCATED SINGULAR VALUE DECOMPOSITION , 2004 .

[384]  Marko Robnik-Sikonja,et al.  Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF , 2004, Applied Intelligence.

[385]  Myra Spiliopoulou,et al.  Data Mining for Measuring and Improving the Success of Web Sites , 2004, Data Mining and Knowledge Discovery.

[386]  Xiaoqiang Luo,et al.  A Statistical Model for Multilingual Entity Detection and Tracking , 2004, NAACL.

[387]  W. Bruce Croft,et al.  Language Modeling for Information Retrieval , 2010, The Springer International Series on Information Retrieval.

[388]  Ben Taskar,et al.  Link Prediction in Relational Data , 2003, NIPS.

[389]  Ben Taskar,et al.  Max-Margin Markov Networks , 2003, NIPS.

[390]  Victoria Stodden,et al.  When Does Non-Negative Matrix Factorization Give a Correct Decomposition into Parts? , 2003, NIPS.

[391]  Christina S. Leslie,et al.  Fast Kernels for Inexact String Matching , 2003, COLT.

[392]  Joydeep Ghosh,et al.  A Unified Framework for Model-based Clustering , 2003, J. Mach. Learn. Res..

[393]  Ajith Abraham,et al.  Business Intelligence from Web Usage Mining , 2003, J. Inf. Knowl. Manag..

[394]  Balaji Padmanabhan,et al.  Segmenting customer transactions using a pattern-based clustering approach , 2003, Third IEEE International Conference on Data Mining.

[395]  Inderjit S. Dhillon,et al.  Information theoretic clustering of sparse cooccurrence data , 2003, Third IEEE International Conference on Data Mining.

[396]  Yiming Yang,et al.  Margin-based local regression for adaptive filtering , 2003, CIKM '03.

[397]  Li Wang,et al.  CUBN: A clustering algorithm based on density and distance , 2003, Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693).

[398]  Nello Cristianini,et al.  Efficiently Learning the Metric with Side-Information , 2003, ALT.

[399]  Bernhard Schölkopf,et al.  Kernel Methods in Computational Biology , 2005 .

[400]  Nitesh V. Chawla,et al.  SMOTEBoost: Improving Prediction of the Minority Class in Boosting , 2003, PKDD.

[401]  Ouri Wolfson,et al.  Spatio-temporal data reduction with deterministic error bounds , 2003, DIALM-POMC '03.

[402]  Judy Sheard,et al.  Determining Website Usage Time from Interactions: Data Preparation and Analysis , 2003 .

[403]  Jaime Teevan,et al.  Implicit feedback for inferring user preference: a bibliography , 2003, SIGF.

[404]  Inderjit S. Dhillon,et al.  Diametrical clustering for identifying anti-correlated gene clusters , 2003, Bioinform..

[405]  Martin J. Wainwright,et al.  Multitarget-multisensor data association using the tree-reweighted max-product algorithm , 2003, SPIE Defense + Commercial Sensing.

[406]  Dimitrios Gunopulos,et al.  Indexing multi-dimensional time-series with support for multiple distance measures , 2003, KDD '03.

[407]  Raymond J. Mooney,et al.  Adaptive duplicate detection using learnable string similarity measures , 2003, KDD '03.

[408]  Tomer Hertz,et al.  Learning Distance Functions using Equivalence Relations , 2003, ICML.

[409]  Lise Getoor,et al.  Link-Based Classification , 2003, Encyclopedia of Machine Learning and Data Mining.

[410]  Yi Zhang,et al.  Exploration and Exploitation in Adaptive Filtering Based on Bayesian Active Learning , 2003, ICML.

[411]  Carla E. Brodley,et al.  Random Projection for High Dimensional Data Clustering: A Cluster Ensemble Approach , 2003, ICML.

[412]  Thomas D. Sandry,et al.  Introductory Statistics With R , 2003, Technometrics.

[413]  William W. Cohen,et al.  Beyond independent relevance: methods and evaluation metrics for subtopic retrieval , 2003, SIGIR.

[414]  Michael I. Jordan,et al.  Modeling annotated data , 2003, SIGIR.

[415]  James Allan,et al.  Retrieval and novelty detection at the sentence level , 2003, SIGIR.

[416]  Yiming Yang,et al.  Robustness of regularized linear classification methods in text categorization , 2003, SIGIR.

[417]  Dan Klein,et al.  Accurate Unlexicalized Parsing , 2003, ACL.

[418]  Haidong Wang,et al.  Discovering molecular pathways from protein interaction and gene expression data , 2003, ISMB.

[419]  Foster J. Provost,et al.  Learning When Training Data are Costly: The Effect of Class Distribution on Tree Induction , 2003, J. Artif. Intell. Res..

[420]  Antonija Mitrovic,et al.  A Comparative Analysis of Cognitive Tutoring and Constraint-Based Modeling , 2003, User Modeling.

[421]  Feng Shao,et al.  XRANK: ranked keyword search over XML documents , 2003, SIGMOD '03.

[422]  D. Edwards Data Mining: Concepts, Models, Methods, and Algorithms , 2003 .

[423]  Andreas S. Pomportsis,et al.  The design and the formative evaluation of an adaptive educational system based on cognitive styles , 2003, Comput. Educ..

[424]  Wayne H. Ward,et al.  Question Classification with Support Vector Machines and Error Correcting Codes , 2003, HLT-NAACL.

[425]  Fernando Pereira,et al.  Shallow Parsing with Conditional Random Fields , 2003, NAACL.

[426]  Jitender S. Deogun,et al.  Time-series data mining in a geospatial decision support system , 2003 .

[427]  Ali A. Ghorbani,et al.  Y-means: a clustering method for intrusion detection , 2003, CCECE 2003 - Canadian Conference on Electrical and Computer Engineering. Toward a Caring and Humane Technology (Cat. No.03CH37436).

[428]  Henk A L Kiers,et al.  A fast method for choosing the numbers of components in Tucker3 analysis. , 2003, The British journal of mathematical and statistical psychology.

[429]  Bin Zhang Comparison of the Performance of Center-Based Clustering Algorithms , 2003, PAKDD.

[430]  Joydeep Ghosh,et al.  Relationship-Based Clustering and Visualization for High-Dimensional Data Mining , 2003, INFORMS J. Comput..

[431]  David A. Forsyth,et al.  Matching Words and Pictures , 2003, J. Mach. Learn. Res..

[432]  Andrew McCallum,et al.  Semi-Supervised Clustering with User Feedback , 2003 .

[433]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[434]  Nikos A. Vlassis,et al.  The global k-means clustering algorithm , 2003, Pattern Recognit..

[435]  Ian T. Jolliffe,et al.  Fitting mixtures of von Mises distributions: a case study involving sudden infant death syndrome , 2003, Comput. Stat. Data Anal..

[436]  Rasmus Bro,et al.  Recent developments in CANDECOMP/PARAFAC algorithms: a critical review , 2003 .

[437]  Cristina Conati,et al.  Inferring user goals from personality and behavior in a causal model of user affect , 2003, IUI '03.

[438]  Bradley N. Miller,et al.  MovieLens unplugged: experiences with an occasionally connected recommender system , 2003, IUI '03.

[439]  Gerhard Knolmayer,et al.  Decision support models for composing and navigating through e-learning objects , 2003, 36th Annual Hawaii International Conference on System Sciences, 2003. Proceedings of the.

[440]  Michael I. Jordan,et al.  A generalized mean field algorithm for variational inference in exponential families , 2002, UAI.

[441]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[442]  John Langford,et al.  PAC-MDL Bounds , 2003, COLT.

[443]  D. Wishart,et al.  k-Means Clustering with Outlier Detection, Mixed Variables and Missing Values , 2003 .

[444]  Judy Kay,et al.  Artificial intelligence in education : shaping the future of learning through intelligent technologies , 2003 .

[445]  Marina Meila,et al.  Comparing Clusterings by the Variation of Information , 2003, COLT.

[446]  Attila Gürsoy,et al.  Data Decomposition for Parallel K-means Clustering , 2003, Parallel Processing and Applied Mathematics.

[447]  Timos K. Sellis,et al.  Spatio-temporal Databases in the Years Ahead , 2003, Spatio-Temporal Databases: The CHOROCHRONOS Approach.

[448]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[449]  Shi Zhong,et al.  A Comparative Study of Generative Models for Document Clustering , 2003 .

[450]  Nectaria Tryfona,et al.  Conceptual Modeling for Spatio-Temporal Applications , 2003, Encyclopedia of Database Systems.

[451]  F. M. Hoffman,et al.  Multivariate Spatio-Temporal Clustering of Times-Series Data: An Approach for Diagnosing Cloud Properties and Understanding ARM Site Representativeness , 2003 .

[452]  I. Dhillon,et al.  Modeling Data using Directional Distributions , 2003 .

[453]  Peter Brusilovsky,et al.  Developing Adaptive Educational Hypermedia Systems: From Design Models to Authoring Tools , 2003 .

[454]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[455]  Michael W. Berry,et al.  GTP (General Text Parser) Software for Text Mining , 2003 .

[456]  Michael I. Jordan,et al.  FINDING CLUSTERS IN INDEPENDENT COMPONENT ANALYSIS , 2003 .

[457]  Sargur N. Srihari,et al.  Properties of Binary Vector Dissimilarity Measures , 2003 .

[458]  Manolis Mavrikis,et al.  WaLLiS: a Web-based ILE for Science and Engineering Students Studying Mathematics , 2003 .

[459]  Joydeep Ghosh,et al.  Scalable, Balanced Model-based Clustering , 2003, SDM.

[460]  David B. Skillicorn Clusters within Clusters: SVD and Counterterrorism , 2003 .

[461]  Roger E Bumgarner,et al.  Clustering gene-expression data with repeated measurements , 2003, Genome Biology.

[462]  Ellen M. Voorhees,et al.  Overview of the TREC 2002 Question Answering Track , 2003, TREC.

[463]  Inderjit S. Dhillon,et al.  Iterative clustering of high dimensional text data augmented by local search , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[464]  Michael K. Ng,et al.  Clustering categorical data sets using tabu search techniques , 2002, Pattern Recognit..

[465]  Yi Li,et al.  COOLCAT: an entropy-based algorithm for categorical clustering , 2002, CIKM '02.

[466]  Jack Mostow,et al.  Viewing and analyzing multimodal human-computer tutorial dialogue: a database approach , 2002, Proceedings. Fourth IEEE International Conference on Multimodal Interfaces.

[467]  Jaana Kekäläinen,et al.  Cumulated gain-based evaluation of IR techniques , 2002, TOIS.

[468]  Peter Grabusts,et al.  Using grid-clustering methods in data classification , 2002, Proceedings. International Conference on Parallel Computing in Electrical Engineering.

[469]  Marko Grobelnik,et al.  Feature Selection Using Support Vector Machines , 2002 .

[470]  Torben Bach Pedersen,et al.  A Hybrid Approach to Web Usage Mining , 2002, DaWaK.

[471]  Dimitrios Gunopulos,et al.  Robust similarity measures for mobile object trajectories , 2002, Proceedings. 13th International Workshop on Database and Expert Systems Applications.

[472]  Michalis Vazirgiannis,et al.  Clustering validity checking methods: part II , 2002, SGMD.

[473]  Sankar K. Pal,et al.  Web mining in soft computing framework: relevance, state of the art and future directions , 2002, IEEE Trans. Neural Networks.

[474]  Dan Roth,et al.  Learning Question Classifiers , 2002, COLING.

[475]  Hwee Tou Ng,et al.  Bayesian online classifiers for text classification and filtering , 2002, SIGIR '02.

[476]  Jimmy J. Lin,et al.  Web question answering: is more always better? , 2002, SIGIR '02.

[477]  Yi Zhang,et al.  Novelty and redundancy detection in adaptive filtering , 2002, SIGIR '02.

[478]  Joydeep Ghosh,et al.  Frequency sensitive competitive learning for clustering on high-dimensional hyperspheres , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[479]  Philip S. Yu,et al.  /spl delta/-clusters: capturing subspace correlation in a large data set , 2002, Proceedings 18th International Conference on Data Engineering.

[480]  Byron Dom,et al.  An Information-Theoretic External Cluster-Validity Measure , 2002, UAI.

[481]  Cristina Conati,et al.  Probabilistic assessment of user's emotions in educational games , 2002, Appl. Artif. Intell..

[482]  Barbara P. Buttenfield,et al.  Loglinear and multidimensional scaling models of digital library navigation , 2002, Int. J. Hum. Comput. Stud..

[483]  Ben Taskar,et al.  Discriminative Probabilistic Models for Relational Data , 2002, UAI.

[484]  Joydeep Ghosh,et al.  Cluster Ensembles A Knowledge Reuse Framework for Combining Partitionings , 2002, AAAI/IAAI.

[485]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[486]  Yiming Yang,et al.  Topic-conditioned novelty detection , 2002, KDD.

[487]  Jaideep Srivastava,et al.  Selecting the right interestingness measure for association patterns , 2002, KDD.

[488]  Chi-Hoon Lee,et al.  Clustering spatial data in the presence of obstacles: a density-based approach , 2002, Proceedings International Database Engineering and Applications Symposium.

[489]  Arindam Banerjee,et al.  Semi-supervised Clustering by Seeding , 2002, ICML.

[490]  Dan Klein,et al.  From Instance-level Constraints to Space-Level Constraints: Making the Most of Prior Knowledge in Data Clustering , 2002, ICML.

[491]  Thomas Gärtner,et al.  Multi-Instance Kernels , 2002, ICML.

[492]  Gautam Biswas,et al.  Unsupervised Learning with Mixed Numeric and Nominal Data , 2002, IEEE Trans. Knowl. Data Eng..

[493]  Alan L. Yuille,et al.  CCCP Algorithms to Minimize the Bethe and Kikuchi Free Energies: Convergent Alternatives to Belief Propagation , 2002, Neural Computation.

[494]  T. M. Murali,et al.  A Monte Carlo algorithm for fast projective clustering , 2002, SIGMOD '02.

[495]  Helen Pain,et al.  Informing the Detection of the Students' Motivational State: An Empirical Study , 2002, Intelligent Tutoring Systems.

[496]  Johan Bollen,et al.  Evaluation of Digital Library Impact and User Communities by Analysis of Usage Patterns , 2002, D Lib Mag..

[497]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[498]  Michalis Vazirgiannis,et al.  Cluster validity methods: part I , 2002, SGMD.

[499]  K. Shimizu,et al.  PEARSON TYPE VII DISTRIBUTIONS ON SPHERES , 2002 .

[500]  Dirk Helbing,et al.  Reconstructing the spatio-temporal traffic dynamics from stationary detector data , 2002 .

[501]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[502]  Wojciech Szpankowski,et al.  Semi-discrete matrix transforms (SDD) for image and video compression , 2002, Proceedings DCC 2002. Data Compression Conference.

[503]  Jae-Woo Chang,et al.  A new cell-based clustering method for large, high-dimensional data in data mining applications , 2002, SAC '02.

[504]  Zhi-Qiang Liu,et al.  Self-splitting competitive learning: a new on-line clustering paradigm , 2002, IEEE Trans. Neural Networks.

[505]  J. Friedman Stochastic gradient boosting , 2002 .

[506]  Edith Cohen,et al.  Reachability and distance queries via 2-hop labels , 2002, SODA '02.

[507]  Steven J. Phillips Acceleration of K-Means and Related Clustering Algorithms , 2002, ALENEX.

[508]  Samuel Kaski,et al.  Clustering Based on Conditional Distributions in an Auxiliary Space , 2002, Neural Computation.

[509]  Eleazar Eskin,et al.  The Spectrum Kernel: A String Kernel for SVM Protein Classification , 2001, Pacific Symposium on Biocomputing.

[510]  Gunnar Rätsch,et al.  A New Discriminative Kernel from Probabilistic Models , 2001, Neural Computation.

[511]  David B. Skillicorn,et al.  Semidiscrete Decomposition: A Bump Hunting Technique , 2002, AusDM.

[512]  James Allan,et al.  Topic detection and tracking: event-based information organization , 2002 .

[513]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[514]  Albert T. Corbett,et al.  A Controlled Evaluation of Computer- versus Human-assisted Oral Reading , 2002 .

[515]  Margaret H. Dunham,et al.  Data Mining: Introductory and Advanced Topics , 2002 .

[516]  Junyu Niu,et al.  FDU at TREC 2002: Filtering, Q&A, Web and Video Tasks , 2002, TREC.

[517]  Min Zhang,et al.  Incremental Learning for Profile Training in Adaptive Document Filtering , 2002, TREC.

[518]  Brandon Muramatsu,et al.  Draft Standard for Learning Object Metadata , 2002 .

[519]  Rohini K. Srihari,et al.  UB at TREC 11: Batch and Adaptive Filtering , 2002, TREC.

[520]  Risi Kondor,et al.  Diffusion kernels on graphs and other discrete structures , 2002, ICML 2002.

[521]  Pang-Ning Tan,et al.  Temporal Data Mining for the Discovery and Analysis of Ocean Climate Indices , 2002 .

[522]  Michael I. Jordan,et al.  Distance Metric Learning with Application to Clustering with Side-Information , 2002, NIPS.

[523]  Christine D. Piatko,et al.  JHU/APL at TREC 2002: Experiments in Filtering and Arabic Retrieval , 2002, TREC.

[524]  Dustin Boswell,et al.  Introduction to Support Vector Machines , 2002 .

[525]  Jean-Philippe Vert,et al.  Graph-Driven Feature Extraction From Microarray Data Using Diffusion Kernels and Kernel CCA , 2002, NIPS.

[526]  Stephen E. Robertson,et al.  The TREC 2002 Filtering Track Report , 2002, TREC.

[527]  Jianhong Wu,et al.  Projective ART for clustering data sets in high dimensional spaces , 2002, Neural Networks.

[528]  Kyo Kageura,et al.  TREC 11 Experiments at NII: The Effects of Virtual Relevant Documents in Batch Filtering , 2002, TREC.

[529]  William M. Pottenger,et al.  Detecting Patterns in the LSI Term-Term Matrix , 2002 .

[530]  Jason Weston,et al.  Mismatch String Kernels for SVM Protein Classification , 2002, NIPS.

[531]  Muan Hong Ng,et al.  Using Genetic Algorithms for Data Mining in Web-based Educational Hypermedia Systems , 2002 .

[532]  W. Pottenger,et al.  Improving Retrieval Performance with Positive and Negative Equivalence Classes of Terms , 2002 .

[533]  Kevyn Collins-Thompson,et al.  Information Filtering, Novelty Detection, and Named-Page Finding , 2002, TREC.

[534]  Paul B. Kantor,et al.  Rutgers Filtering Work at TREC 2002: Adaptive and Batch , 2002, TREC.

[535]  Diane H. Sonnenwald,et al.  User perspectives on relevance criteria: A comparison among relevant, partially relevant, and not-relevant judgments , 2002, J. Assoc. Inf. Sci. Technol..

[536]  Yair Weiss,et al.  Approximate Inference and Protein-Folding , 2002, NIPS.

[537]  Masaru Kitsuregawa,et al.  WEB Community Mining and WEB Log Mining: Commodity Cluster Based Execution , 2002, Australasian Database Conference.

[538]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[539]  Jack Mostow,et al.  4-month evaluation of a learner-controlled reading tutor that listens , 2008 .

[540]  Lars Kai Hansen,et al.  Signal Detection Using Ica: Application to Chat Room Topic Spotting , 2002 .

[541]  Jack Mostow,et al.  Evaluating tutors that listen: an overview of project LISTEN , 2001 .

[542]  Maguelonne Teisseire,et al.  Real time Web usage mining: a heuristic based distributed miner , 2001, Proceedings of the Second International Conference on Web Information Systems Engineering.

[543]  D. Hand,et al.  Idiot's Bayes—Not So Stupid After All? , 2001 .

[544]  Xiaoyi Gao,et al.  Human population structure detection via multilocus genotype clustering , 2007, BMC Genetics.

[545]  Eric R. Ziegel,et al.  Mastering Data Mining , 2001, Technometrics.

[546]  Song Junde,et al.  GDILC: a grid-based density-isoline clustering algorithm , 2001, 2001 International Conferences on Info-Tech and Info-Net. Proceedings (Cat. No.01EX479).

[547]  Jason Ceddia,et al.  WIER-implementing artifact reuse in an educational environment with real projects-work in progress , 2001, 31st Annual Frontiers in Education Conference. Impact on Engineering and Science Education. Conference Proceedings (Cat. No.01CH37193).

[548]  Max Welling,et al.  Positive tensor factorization , 2001, Pattern Recognit. Lett..

[549]  Tim J. Brailsford,et al.  Personally tailored teaching in WHURLE using conditional transclusion , 2001, Hypertext.

[550]  Anthony Sintes,et al.  Sams Teach Yourself Object-Oriented Programming in 21 Days , 2001 .

[551]  Yi Zhang,et al.  Maximum likelihood estimation for filtering thresholds , 2001, SIGIR '01.

[552]  Attila Gürsoy,et al.  Parallel Pruning for K-Means Clustering on Shared Memory Architectures , 2001, Euro-Par.

[553]  Chris H. Q. Ding,et al.  A spectral method to separate disconnected and nearly-disconnected web graph components , 2001, KDD '01.

[554]  Charles Elkan,et al.  The Foundations of Cost-Sensitive Learning , 2001, IJCAI.

[555]  Michael I. Jordan,et al.  Link Analysis, Eigenvectors and Stability , 2001, IJCAI.

[556]  Tom Minka,et al.  Expectation Propagation for approximate Bayesian inference , 2001, UAI.

[557]  Dimitris Achlioptas,et al.  Fast computation of low rank matrix approximations , 2001, STOC '01.

[558]  Dragan Gamberger,et al.  Combining Unsupervised and Supervised Machine Learning , 2001, AIME.

[559]  Oren Etzioni,et al.  Scaling question answering to the Web , 2001, WWW '01.

[560]  Claire Cardie,et al.  Proceedings of the Eighteenth International Conference on Machine Learning, 2001, p. 577–584. Constrained K-means Clustering with Background Knowledge , 2022 .

[561]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[562]  Vedran Mornar,et al.  General object-oriented framework for iterative optimization algorithms , 2001, Proceedings of the 23rd International Conference on Information Technology Interfaces, 2001. ITI 2001..

[563]  Tanja Mitrovic,et al.  Constraint-based tutors: a success story , 2001, AIED.

[564]  Huan Liu,et al.  '1+1>2': merging distance and density based clustering , 2001, Proceedings Seventh International Conference on Database Systems for Advanced Applications. DASFAA 2001.

[565]  W. J. Whiten,et al.  Fitting Mixtures of Kent Distributions to Aid in Joint Set Identification , 2001 .

[566]  Robert A. Lordo,et al.  Learning from Data: Concepts, Theory, and Methods , 2001, Technometrics.

[567]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[568]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[569]  Inderjit S. Dhillon,et al.  Efficient Clustering of Very Large Document Collections , 2001 .

[570]  M. Opper,et al.  Comparing the Mean Field Method and Belief Propagation for Approximate Inference in MRFs , 2001 .

[571]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[572]  David B. Skillicorn,et al.  High-Performance Singular Value Decomposition , 2001 .

[573]  Peter Brusilovsky,et al.  User modeling and user adapted interaction , 2001 .

[574]  Gregory Aist Towards automatic glossarization: automatically constructing and administering vocabulary assistance factoids and multiple-choice assessment , 2001 .

[575]  Paul E. Green,et al.  K-modes Clustering , 2001, J. Classif..

[576]  John F. Roddick,et al.  Temporal, Spatial, and Spatio-Temporal Data Mining , 2001, Lecture Notes in Computer Science.

[577]  Fan R. K. Chung,et al.  Lectures on Spectral Graph Theory , 2001 .

[578]  S. Aji,et al.  The Generalized Distributive Law and Free Energy Minimization , 2001 .

[579]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[580]  Jianbo Shi,et al.  A Random Walks View of Spectral Segmentation , 2001, AISTATS.

[581]  David D. Lewis,et al.  Applying Support Vector Machines to the TREC-2001 Batch Filtering and Routing Tasks , 2001, TREC.

[582]  Luís Torgo,et al.  Predicting the Density of Algae Communities using Local Regression Trees , 2001 .

[583]  John R. Anderson,et al.  What role do cognitive architectures play in intelligent tutoring systems , 2001 .

[584]  Joydeep Ghosh,et al.  Detecting Seasonal Trends and Cluster Motion Visualization for Very High Dimensional Transactional Data , 2001, SDM.

[585]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[586]  Seungjin Choi,et al.  A COMPARISION OF PCA/ICA FOR DATA PREPROCESSING IN A GEOSCIENCE APPLICATION , 2001 .

[587]  Simon Fraser MULTI-DIMENSIONAL SEQUENTIAL PATTERN MINING , 2001 .

[588]  Thomas J. Watson,et al.  An empirical study of the naive Bayes classifier , 2001 .

[589]  John D. Lafferty,et al.  A study of smoothing methods for language models applied to Ad Hoc information retrieval , 2001, SIGIR '01.

[590]  Douglas W. Oard,et al.  Modeling Information Content Using Observable Behavior , 2001 .

[591]  Erkki Oja,et al.  ARTEFACT DETECTION IN ASTROPHYSICAL IMAGE DATA USING INDEPENDENT COMPONENT ANALYSIS , 2001 .

[592]  Antonija Mitrovic,et al.  Optimising ITS Behaviour with Bayesian Networks and Decision Theory , 2001 .

[593]  A. T. Arampatzis,et al.  Adaptive and temporally-dependent document filtering , 2001 .

[594]  Alok N. Choudhary,et al.  Adaptive Grids for Clustering Massive Data Sets , 2001, SDM.

[595]  Ron Shamir,et al.  A clustering algorithm based on graph connectivity , 2000, Inf. Process. Lett..

[596]  Yee Leung,et al.  Clustering by Scale-Space Filtering , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[597]  Santosh S. Vempala,et al.  On clusterings-good, bad and spectral , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[598]  Philip S. Yu,et al.  Clustering through decision tree construction , 2000, CIKM '00.

[599]  James Allan,et al.  First story detection in TDT is hard , 2000, CIKM '00.

[600]  Sanda M. Harabagiu,et al.  FALCON: Boosting Knowledge for Answer Engines , 2000, TREC.

[601]  Gary V. Vaughan,et al.  GNU Autoconf, Automake, and Libtool , 2000 .

[602]  Umeshwar Dayal,et al.  K-Harmonic Means - A Spatial Clustering Algorithm with Boosting , 2000, TSDM.

[603]  Tao Luo,et al.  Integrating Web Usage and Content Mining for More Effective Personalization , 2000, EC-Web.

[604]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[605]  D. Botstein,et al.  Singular value decomposition for genome-wide expression data processing and modeling. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[606]  Mia Stern,et al.  Adaptive Content in an Online Lecture System , 2000, AH.

[607]  Rasmus Bro,et al.  The N-way Toolbox for MATLAB , 2000 .

[608]  Joseph E. Beck,et al.  ADVISOR: A Machine Learning Architecture for Intelligent Tutor Construction , 2000, AAAI/IAAI.

[609]  John Riedl,et al.  Application of Dimensionality Reduction in Recommender System - A Case Study , 2000 .

[610]  S. Robertson Salton Award lecture: on theoretical argument in information retrieval (summary only): on theoretical argument in information retrieval , 2000, SIGIR '00.

[611]  Luís Torgo,et al.  Partial Linear Trees , 2000, ICML.

[612]  Claire Cardie,et al.  Clustering with Instance-Level Constraints , 2000, AAAI/IAAI.

[613]  Thomas G. Dietterich Ensemble Methods in Machine Learning , 2000, Multiple Classifier Systems.

[614]  Antonija Mitrovic,et al.  Using a Probabilistic Student Model to Control Problem Difficulty , 2000, Intelligent Tutoring Systems.

[615]  Vincent Aleven,et al.  Limitations of Student Control: Do Students Know When They Need Help? , 2000, Intelligent Tutoring Systems.

[616]  Stephen E. Robertson,et al.  Threshold setting in adaptive filtering , 2000, J. Documentation.

[617]  Hans-Peter Kriegel,et al.  LOF: identifying density-based local outliers , 2000, SIGMOD '00.

[618]  Philip S. Yu,et al.  Finding generalized projected clusters in high dimensional spaces , 2000, SIGMOD '00.

[619]  Douglas W. Oard,et al.  User Modeling for Information Access Based on Implicit Feedback , 2000 .

[620]  Ayhan Demiriz,et al.  Constrained K-Means Clustering , 2000 .

[621]  Marvin J. Croy,et al.  Problem Solving, Working Backwards, and Graphic Proof Representation , 2000 .

[622]  H. Kiers Some procedures for displaying results from three‐way methods , 2000 .

[623]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[624]  Shyi-Ming Chen,et al.  Temperature prediction using fuzzy time series , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[625]  Allison Woodruff,et al.  Enhancing a digital book with a reading recommender , 2000, CHI.

[626]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[627]  Nikos D. Sidiropoulos,et al.  Blind PARAFAC receivers for DS-CDMA systems , 2000, IEEE Trans. Signal Process..

[628]  Willem J. Heiser,et al.  Two Purposes for Matrix Factorization: A Historical Appraisal , 2000, SIAM Rev..

[629]  Aidong Zhang,et al.  WaveCluster: a wavelet-based clustering approach for spatial data in very large databases , 2000, The VLDB Journal.

[630]  Jon M. Kleinberg,et al.  Clustering categorical data: an approach based on dynamical systems , 2000, The VLDB Journal.

[631]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[632]  Tamara G. Kolda,et al.  Algorithm 805: computation and uses of the semidiscrete matrix decomposition , 2000, TOMS.

[633]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[634]  Andy P. Field,et al.  Discovering Statistics Using SPSS , 2000 .

[635]  Siddheswar Ray,et al.  Determination of Number of Clusters in K-Means Clustering and Application in Colour Image Segmentation , 2000 .

[636]  David L. Dowe,et al.  MML clustering of multi-state, Poisson, von Mises circular and Gaussian distributions , 2000, Stat. Comput..

[637]  Jeffrey Heer,et al.  Identification of Web User Traffic Composition using Multi-Modal Clustering and Information Scent , 2000 .

[638]  Nathalie Japkowicz,et al.  The Class Imbalance Problem: Significance and Strategies , 2000 .

[639]  R. Mooney,et al.  Impact of Similarity Measures on Web-page Clustering , 2000 .

[640]  B. Zimmerman,et al.  Self-Efficacy: An Essential Motive to Learn. , 2000, Contemporary educational psychology.

[641]  Eduard H. Hovy,et al.  Question Answering in Webclopedia , 2000, TREC.

[642]  Jennifer Neville,et al.  Iterative Classification in Relational Data , 2000 .

[643]  Stefan Sperlich,et al.  Generalized Additive Models , 2014 .

[644]  W. Freeman,et al.  Generalized Belief Propagation , 2000, NIPS.

[645]  Jaideep Srivastava,et al.  Web usage mining: discovery and applications of usage patterns from Web data , 2000, SKDD.

[646]  Stephen E. Robertson,et al.  Microsoft Cambridge at TREC-9: Filtering Track , 2000, TREC.

[647]  Gérard Dreyfus,et al.  Training Context-Sensitive Neural Networks with Few Relevant Examples for the TREC-9 Routing , 2000, TREC.

[648]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[649]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[650]  George Karypis,et al.  A Comparison of Document Clustering Techniques , 2000 .

[651]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[652]  Palma Blonda,et al.  A survey of fuzzy clustering algorithms for pattern recognition. I , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[653]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[654]  Sanda M. Harabagiu,et al.  LASSO: A Tool for Surfing the Answer Net , 1999, TREC.

[655]  Robert P. W. Duin,et al.  Support vector domain description , 1999, Pattern Recognit. Lett..

[656]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[657]  Éva Tardos,et al.  Approximation algorithms for classification problems with pairwise relationships: metric labeling and Markov random fields , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[658]  Peter Pirolli,et al.  Mining Longest Repeating Subsequences to Predict World Wide Web Surfing , 1999, USENIX Symposium on Internet Technologies and Systems.

[659]  Sandra K. Parker,et al.  Web Style Guide: Basic Design Principles for Creating Web Sites , 1999 .

[660]  Pilar Rodríguez Marín,et al.  Dynamic generation of adaptive Internet-based courses , 1999, J. Netw. Comput. Appl..

[661]  Dorin Comaniciu,et al.  Mean shift analysis and applications , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[662]  Daniel A. Keim,et al.  Optimal Grid-Clustering: Towards Breaking the Curse of Dimensionality in High-Dimensional Clustering , 1999, VLDB.

[663]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[664]  M. KleinbergJon Authoritative sources in a hyperlinked environment , 1999 .

[665]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[666]  Yongjian Fu,et al.  A Generalization-Based Approach to Clustering of Web Usage Sessions , 1999, WEBKDD.

[667]  David Haussler,et al.  Using the Fisher Kernel Method to Detect Remote Protein Homologies , 1999, ISMB.

[668]  Stuart Hannabuss,et al.  Strategic Help Seeking: Implications for Learning and Teaching , 1999 .

[669]  Michael K. Ng,et al.  A fuzzy k-modes algorithm for clustering categorical data , 1999, IEEE Trans. Fuzzy Syst..

[670]  Johannes Gehrke,et al.  CACTUS—clustering categorical data using summaries , 1999, KDD '99.

[671]  Vipin Kumar,et al.  Chameleon: Hierarchical Clustering Using Dynamic Modeling , 1999, Computer.

[672]  Yi Zhang,et al.  Entropy-based subspace clustering for mining numerical data , 1999, KDD '99.

[673]  Andrew W. Moore,et al.  Accelerating exact k-means algorithms with geometric reasoning , 1999, KDD '99.

[674]  Pedro M. Domingos MetaCost: a general method for making classifiers cost-sensitive , 1999, KDD '99.

[675]  V. J. Rayward-Smith,et al.  Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition , 1999 .

[676]  Michael W. Berry,et al.  Understanding search engines: mathematical modeling and text retrieval (software , 1999 .

[677]  Lillian Lee,et al.  Measures of Distributional Similarity , 1999, ACL.

[678]  M. Narasimha Murty,et al.  Genetic K-means algorithm , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[679]  Philip S. Yu,et al.  Fast algorithms for projected clustering , 1999, SIGMOD '99.

[680]  Maurice Mulvenna,et al.  Navigation Pattern Discovery from Internet Data , 1999 .

[681]  Nicholas I. Fisher,et al.  Bump hunting in high-dimensional data , 1999, Stat. Comput..

[682]  Michael J. Pazzani,et al.  A personal news agent that talks, learns and explains , 1999, AGENTS '99.

[683]  Jürgen Schmidhuber,et al.  Feature Extraction Through LOCOCODE , 1999, Neural Computation.

[684]  Sudipto Guha,et al.  ROCK: a robust clustering algorithm for categorical attributes , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[685]  Curtis A. Carver,et al.  Enhancing student learning through hypermedia courseware and incorporation of student learning styles , 1999 .

[686]  Mauro Birattari,et al.  Lazy Learners at work: the Lazy Learning Toolbox , 1999 .

[687]  R. Gunst Applied Regression Analysis , 1999, Technometrics.

[688]  Dorian Pyle,et al.  Data Preparation for Data Mining , 1999 .

[689]  L. Breiman Random Forests--random Features , 1999 .

[690]  Aapo Hyvärinen,et al.  Survey on Independent Component Analysis , 1999 .

[691]  Joydeep Ghosh,et al.  Structurally adaptive modular networks for nonstationary environments , 1999, IEEE Trans. Neural Networks.

[692]  Tom Murray,et al.  Authoring Intelligent Tutoring Systems: An analysis of the state of the art , 1999 .

[693]  S. Hochreiter,et al.  Lococode Performs Nonlinear ICA Without Knowing The Number Of Sources , 1999 .

[694]  Ayhan Demiriz,et al.  Semi-Supervised Clustering Using Genetic Algorithms , 1999 .

[695]  Naohiro Ishii,et al.  Memory-Based Weighted-Majority Prediction for Recommender Systems , 1999, SIGIR 1999.

[696]  Michael Collins,et al.  AT&T at TREC-8 , 1999, TREC.

[697]  Tamara G. Kolda,et al.  Latent Semantic Indexing Via a Semi-Discrete Matrix Decomposition , 1999 .

[698]  L. Torgo,et al.  Inductive learning of tree-based regression models , 1999 .

[699]  Florent Masseglia,et al.  An efficient algorithm for Web usage mining , 1999 .

[700]  Stephen E. Robertson,et al.  The TREC-8 Filtering Track Final Report , 1999, TREC.

[701]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[702]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[703]  David Haussler,et al.  Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.

[704]  Maurice D. Mulvenna,et al.  Discovering Internet marketing intelligence through online analytical web usage mining , 1998, SGMD.

[705]  Alan M. Frieze,et al.  Fast Monte-Carlo algorithms for finding low-rank approximations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[706]  K. Rose Deterministic annealing for clustering, compression, classification, regression, and related optimization problems , 1998, Proc. IEEE.

[707]  S. Hamilton,et al.  Electrochemical mass-transport in overburden: a new model to account for the formation of selective leach geochemical anomalies in glacial terrain , 1998 .

[708]  Tamara G. Kolda,et al.  A semidiscrete matrix decomposition for latent semantic indexing information retrieval , 1998, TOIS.

[709]  Thomas G. Dietterich Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms , 1998, Neural Computation.

[710]  Jürgen Schmidhuber,et al.  LOCOCODE versus PCA and ICA , 1998 .

[711]  Andrew McCallum,et al.  Distributional clustering of words for text classification , 1998, SIGIR '98.

[712]  Wai Lam,et al.  Using a generalized instance set for automatic text categorization , 1998, SIGIR '98.

[713]  Yoram Singer,et al.  Boosting and Rocchio applied to text filtering , 1998, SIGIR '98.

[714]  Yiming Yang,et al.  A study of retrospective and on-line event detection , 1998, SIGIR '98.

[715]  James P. Callan Learning while filtering documents , 1998, SIGIR '98.

[716]  Ron Kohavi,et al.  The Case against Accuracy Estimation for Comparing Induction Algorithms , 1998, ICML.

[717]  Mark Craven,et al.  Combining Statistical and Relational Methods for Learning in Hypertext Domains , 1998, ILP.

[718]  Sebastian Thrun,et al.  Learning to Classify Text from Labeled and Unlabeled Documents , 1998, AAAI/IAAI.

[719]  Oren Etzioni,et al.  Adaptive Web Sites: Automatically Synthesizing Web Pages , 1998, AAAI/IAAI.

[720]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[721]  Piotr Indyk,et al.  Enhanced hypertext categorization using hyperlinks , 1998, SIGMOD '98.

[722]  J. C. BurgesChristopher A Tutorial on Support Vector Machines for Pattern Recognition , 1998 .

[723]  Sudipto Guha,et al.  CURE: an efficient clustering algorithm for large databases , 1998, SIGMOD '98.

[724]  Dimitrios Gunopulos,et al.  Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.

[725]  Sally Jo Cunningham,et al.  Usage analysis of a digital library , 1998, DL '98.

[726]  B. W. Smee A new theory to explain the formation of soil geochemical responses over deeply covered gold mineralization in arid environments , 1998 .

[727]  David D. Lewis,et al.  Naive (Bayes) at Forty: The Independence Assumption in Information Retrieval , 1998, ECML.

[728]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[729]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[730]  M. Goldszmidt,et al.  A Probabilistic Approach to Full-Text Document Clustering , 1998 .

[731]  Brendan J. Frey,et al.  Iterative Decoding of Compound Codes by Probability Propagation in Graphical Models , 1998, IEEE J. Sel. Areas Commun..

[732]  Jung-Fu Cheng,et al.  Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm , 1998, IEEE J. Sel. Areas Commun..

[733]  Jeff A. Bilmes,et al.  A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models , 1998 .

[734]  Ron Kohavi,et al.  Feature Selection for Knowledge Discovery and Data Mining , 1998 .

[735]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[736]  Yiming Yang,et al.  Topic Detection and Tracking Pilot Study Final Report , 1998 .

[737]  Philip S. Yu,et al.  SpeedTracer: A Web Usage Mining and Analysis Tool , 1998, IBM Syst. J..

[738]  Jade Goldstein-Stewart,et al.  The use of MMR, diversity-based reranking for reordering documents and producing summaries , 1998, SIGIR '98.

[739]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[740]  Adrian E. Raftery,et al.  How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis , 1998, Comput. J..

[741]  David M. Nichols,et al.  Implicit Rating and Filtering , 1998 .

[742]  Peter Jansen,et al.  Threshold Calibration in CLARIT Adaptive Filtering , 1998, TREC.

[743]  R. Papka,et al.  On-line new event detection and tracking , 1998, SIGIR '98.

[744]  James Ho,et al.  Evaluating the World Wide Web: A Global Study of Commercial Sites , 2006, J. Comput. Mediat. Commun..

[745]  Khaled S. Al-Sultan,et al.  A tabu search-based algorithm for the fuzzy clustering problem , 1997, Pattern Recognit..

[746]  Pierre Hansen,et al.  Variable neighborhood search , 1997, Eur. J. Oper. Res..

[747]  P. Paatero A weighted non-negative least squares algorithm for three-way ‘PARAFAC’ factor analysis , 1997 .

[748]  Alvin F. Martin,et al.  The DET curve in assessment of detection task performance , 1997, EUROSPEECH.

[749]  R. Bro,et al.  A fast non‐negativity‐constrained least squares algorithm , 1997 .

[750]  Se June Hong,et al.  Use of Contextaul Information for Feature Ranking and Discretization , 1997, IEEE Trans. Knowl. Data Eng..

[751]  Prabhakar Raghavan,et al.  Using Taxonomy, Discriminants, and Signatures for Navigating in Text Databases , 1997, VLDB.

[752]  Jiong Yang,et al.  STING: A Statistical Information Grid Approach to Spatial Data Mining , 1997, VLDB.

[753]  Tom Fawcett,et al.  Analysis and Visualization of Classifier Performance: Comparison under Imprecise Class and Cost Distributions , 1997, KDD.

[754]  Erich Schikuta,et al.  The BANG-Clustering System: Grid-Based Data Analysis , 1997, IDA.

[755]  Peter L. Brooks,et al.  Visualizing data , 1997 .

[756]  Yishay Mansour,et al.  An Information-Theoretic Analysis of Hard and Soft Assignment Methods for Clustering , 1997, UAI.

[757]  Daphne Koller,et al.  Hierarchically Classifying Documents Using Very Few Words , 1997, ICML.

[758]  Shivakumar Vaithyanathan,et al.  Exploiting clustering and phrases for context-based information retrieval , 1997, SIGIR '97.

[759]  Hinrich Schütze,et al.  Projections for efficient document clustering , 1997, SIGIR '97.

[760]  Jan O. Pedersen,et al.  Almost-constant-time clustering of arbitrary corpus subsets4 , 1997, SIGIR '97.

[761]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[762]  Theda McGrew To , 1997, Neurology.

[763]  J. A. Cuesta-Albertos,et al.  Trimmed $k$-means: an attempt to robustify quantizers , 1997 .

[764]  Bradley N. Miller,et al.  GroupLens: applying collaborative filtering to Usenet news , 1997, CACM.

[765]  Tony R. Martinez,et al.  Improved Heterogeneous Distance Functions , 1996, J. Artif. Intell. Res..

[766]  Ron Kohavi,et al.  Data Mining Using MLC a Machine Learning Library in C++ , 1996, Int. J. Artif. Intell. Tools.

[767]  Mary A. Mark,et al.  An Interview Reflection on “Intelligent Tutoring Goes to School in the Big City” , 2015, International Journal of Artificial Intelligence in Education.

[768]  Joel D. Martin,et al.  J. Evaluation on an assessment system based on Bayesian student modeling , 1997 .

[769]  Joshua Zhexue Huang,et al.  A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data Mining , 1997, DMKD.

[770]  T. Joachims WebWatcher : A Tour Guide for the World Wide Web , 1997 .

[771]  Sanjay Ranka,et al.  An effic ient k-means clustering algorithm , 1997 .

[772]  Zhexue Huang,et al.  CLUSTERING LARGE DATA SETS WITH MIXED NUMERIC AND CATEGORICAL VALUES , 1997 .

[773]  Michael L. Littman,et al.  Automatic Cross-Language Retrieval Using Latent Semantic Indexing , 1997 .

[774]  Stan Matwin,et al.  Addressing the Curse of Imbalanced Training Sets: One-Sided Selection , 1997, ICML.

[775]  Xiao-Li Meng,et al.  The EM Algorithm—an Old Folk‐song Sung to a Fast New Tune , 1997 .

[776]  Cristina Conati,et al.  On-Line Student Modeling for Coached Problem Solving Using Bayesian Networks , 1997 .

[777]  Padhraic Smyth,et al.  Clustering Sequences with Hidden Markov Models , 1996, NIPS.

[778]  Alexander J. Smola,et al.  Support Vector Method for Function Approximation, Regression Estimation and Signal Processing , 1996, NIPS.

[779]  Alexander J. Smola,et al.  Support Vector Regression Machines , 1996, NIPS.

[780]  H. Bock Probabilistic models in cluster analysis , 1996 .

[781]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[782]  Gregory Piatetsky-Shapiro,et al.  The KDD process for extracting useful knowledge from volumes of data , 1996, CACM.

[783]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[784]  Erich Schikuta,et al.  Grid-clustering: an efficient hierarchical clustering method for very large data sets , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[785]  Anil K. Jain,et al.  Large-scale parallel data clustering , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[786]  Marti A. Hearst,et al.  Reexamining the cluster hypothesis: scatter/gather on retrieval results , 1996, SIGIR '96.

[787]  James P. Callan,et al.  Document filtering with inference networks , 1996, SIGIR '96.

[788]  James Allan,et al.  Incremental relevance feedback for information filtering , 1996, SIGIR '96.

[789]  Raymond J. Mooney,et al.  A Novel Application of Theory Refinement to Student Modeling , 1996, AAAI/IAAI, Vol. 1.

[790]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[791]  Mehran Sahami,et al.  Learning Limited Dependence Bayesian Classifiers , 1996, KDD.

[792]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[793]  Tian Zhang,et al.  BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.

[794]  Ramana Rao,et al.  Silk from a sow's ear: extracting usable structures from the Web , 1996, CHI.

[795]  V.A.J. Maller Criminal investigation systems: the growing dependence on advanced computer systems , 1996 .

[796]  Harvey F. Silver,et al.  Learning Styles and Strategies , 1996 .

[797]  R. Watson,et al.  THE WORLD WIDE WEB AS AN ADVERTISING MEDIUM , 1996 .

[798]  W. Härdle,et al.  Statistical Theory and Computational Aspects of Smoothing , 1996 .

[799]  B. Weiner,et al.  Theories and principles of motivation. , 1996 .

[800]  Timothy Koschmann,et al.  Cscl : Theory and Practice of An Emerging Paradigm , 1996 .

[801]  Linda Schamber,et al.  User Criteria in Relevance Evaluation: Toward Development of a Measurement Scale. , 1996 .

[802]  P. Sopp Cluster analysis. , 1996, Veterinary immunology and immunopathology.

[803]  Alan Wexeiblat An Environment for Aiding Information-Browsing Tasks , 1996 .

[804]  D. Kalman A Singularly Valuable Decomposition: The SVD of a Matrix , 1996 .

[805]  Shun-ichi Amari,et al.  Information geometry of the EM and em algorithms for neural networks , 1995, Neural Networks.

[806]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[807]  Gene H. Golub,et al.  A Rank-One Reduction Formula and Its Applications to Matrix Factorizations , 1995, SIAM Rev..

[808]  Susan T. Dumais,et al.  Using Linear Algebra for Intelligent Information Retrieval , 1995, SIAM Rev..

[809]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[810]  Jim Freeman,et al.  Outliers in Statistical Data (3rd edition) , 1995 .

[811]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[812]  Ken Lang,et al.  NewsWeeder: Learning to Filter Netnews , 1995, ICML.

[813]  David Yarowsky,et al.  Unsupervised Word Sense Disambiguation Rivaling Supervised Methods , 1995, ACL.

[814]  K. Wentzel,et al.  The academic lives of neglected, rejected, popular, and controversial children. , 1995, Child development.

[815]  Gérard Govaert,et al.  Gaussian parsimonious clustering models , 1995, Pattern Recognit..

[816]  金田 重郎,et al.  C4.5: Programs for Machine Learning (書評) , 1995 .

[817]  Ramakrishnan Srikant,et al.  Mining sequential patterns , 1995, Proceedings of the Eleventh International Conference on Data Engineering.

[818]  Robert M. Fung,et al.  Applying Bayesian networks to information retrieval , 1995, CACM.

[819]  John R. Anderson,et al.  Student modeling in the ACT Programming Tutor. , 1995 .

[820]  D. Goleman Emotional Intelligence: Why It Can Matter More Than IQ , 1995 .

[821]  Charles J. Alpert,et al.  Spectral Partitioning: The More Eigenvectors, The Better , 1995, 32nd Design Automation Conference.

[822]  Bert Bredeweg,et al.  Student Modelling: The Key to Individualized Knowledge-Based Instruction , 2010, NATO ASI Series.

[823]  Ian H. Witten,et al.  Managing Gigabytes: Compressing and Indexing Documents and Images , 1999 .

[824]  Pentti Paatero,et al.  The Use of Positive Matrix Factorization in the Analysis of Molecular Line Spectra from the Thumbprint Nebula , 1994 .

[825]  Relaxation labeling of Markov random fields , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[826]  Yoichi Shinoda,et al.  Information filtering based on user behavior analysis and best match text retrieval , 1994, SIGIR '94.

[827]  Wray L. Buntine Operations for Learning with Graphical Models , 1994, J. Artif. Intell. Res..

[828]  Marlene Scardamalia,et al.  Computer Support for Knowledge-Building Communities , 1994 .

[829]  Anil K. Jain,et al.  A self-organizing network for hyperellipsoidal clustering (HEC) , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[830]  P. Paatero,et al.  Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values† , 1994 .

[831]  Kien A. Hua,et al.  A decomposition-based simulated annealing technique for data clustering , 1994, PODS '94.

[832]  Manabu Ichino,et al.  Generalized Minkowski metrics for mixed feature-type data analysis , 1994, IEEE Trans. Syst. Man Cybern..

[833]  Carol L. Barry User-Defined Relevance Criteria: An Exploratory Study , 1994, J. Am. Soc. Inf. Sci..

[834]  José Carlos Príncipe,et al.  An analysis of the gamma memory in dynamic neural networks , 1994, IEEE Trans. Neural Networks.

[835]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[836]  Thomas G. Dietterich,et al.  A study of distance-based machine learning algorithms , 1994 .

[837]  Paul J. Werbos,et al.  The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting , 1994 .

[838]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[839]  Bjarne Stroustrup,et al.  The Design and Evolution of C , 1994 .

[840]  Gerald W. Both,et al.  Object-oriented analysis and design with applications , 1994 .

[841]  Gordon I. McCalla,et al.  Granularity-Based Reasoning and Belief Revision in Student Models , 1994 .

[842]  Vance Faber,et al.  Clustering and the continuous k-means algorithm , 1994 .

[843]  R. Agarwal Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[844]  Miin-Shen Yang A survey of fuzzy clustering , 1993 .

[845]  Salvatore J. Stolfo,et al.  Experiments on multistrategy learning by meta-learning , 1993, CIKM '93.

[846]  N. Fisher Statistical Analysis of Circular Data , 1993 .

[847]  S E Fienberg,et al.  A three-sample multiple-recapture approach to census population estimation with heterogeneous catchability. , 1993, Journal of the American Statistical Association.

[848]  A. Raftery,et al.  Model-based Gaussian and non-Gaussian clustering , 1993 .

[849]  Ellen Riloff,et al.  Automatically Constructing a Dictionary for Information Extraction Tasks , 1993, AAAI.

[850]  David R. Karger,et al.  Constant interaction-time scatter/gather browsing of very large document collections , 1993, SIGIR.

[851]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[852]  Goetz Graefe,et al.  Query evaluation techniques for large databases , 1993, CSUR.

[853]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[854]  Fred W. Glover,et al.  A user's guide to tabu search , 1993, Ann. Oper. Res..

[855]  V. Rao Vemuri,et al.  Artificial Neural Networks - Forecasting Time Series , 1993 .

[856]  Eric W. Holman,et al.  Statistical properties of large published classifications , 1992 .

[857]  W. Bruce Croft,et al.  Information filtering and information retrieval: two sides of the same coin? , 1992, CACM.

[858]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[859]  Larry A. Rendell,et al.  The Feature Selection Problem: Traditional Methods and a New Algorithm , 1992, AAAI.

[860]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[861]  John R. Anderson,et al.  Student Modeling and Mastery Learning in a Computer-Based Proramming Tutor , 1992, Intelligent Tutoring Systems.

[862]  Norbert Fuhr,et al.  Probabilistic Models in Information Retrieval , 1992, Comput. J..

[863]  Judea Pearl,et al.  An Algorithm for Deciding if a Set of Observed Independencies Has a Causal Explanation , 1992, UAI.

[864]  David R. Karger,et al.  Scatter/Gather: a cluster-based approach to browsing large document collections , 1992, SIGIR '92.

[865]  J. N. Kapur,et al.  Entropy optimization principles with applications , 1992 .

[866]  Ntc Business Books Nielsen : category management : positioning your organization to win , 1992 .

[867]  D. Laplane Thought and language. , 1992, Behavioural neurology.

[868]  James Allan,et al.  Automatic Retrieval With Locality Information Using SMART , 1992, TREC.

[869]  Paul J. Deitel,et al.  C how to program , 1994 .

[870]  Eric S. Raymond,et al.  Learning GNU Emacs , 1991 .

[871]  Thomas G. Dietterich,et al.  Error-Correcting Output Codes: A General Method for Improving Multiclass Inductive Learning Programs , 1991, AAAI.

[872]  Hans G. C. Tråvén,et al.  A neural network approach to statistical pattern classification by 'semiparametric' estimation of probability density functions , 1991, IEEE Trans. Neural Networks.

[873]  Stavros Christodoulakis,et al.  On the propagation of errors in the size of join results , 1991, SIGMOD '91.

[874]  Igor Kononenko,et al.  Semi-Naive Bayesian Classifier , 1991, EWSL.

[875]  James C. Bezdek,et al.  C-means Clustering with the Ll and L∞ Norms , 1991, IEEE Transactions on Systems, Man and Cybernetics.

[876]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[877]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[878]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[879]  Michael Spann,et al.  A new approach to clustering , 1990, Pattern Recognit..

[880]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[881]  Rose,et al.  Statistical mechanics and phase transitions in clustering. , 1990, Physical review letters.

[882]  Yoav Freund,et al.  Boosting a weak learning algorithm by majority , 1990, COLT '90.

[883]  David W. Aha,et al.  A study of instance-based algorithms for supervised learning tasks: mathematical, empirical, and psychological evaluations , 1990 .

[884]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[885]  Menucha Birenbaum,et al.  On the Stability of Students’Rules of Operation for Solving Arithmetic Problems , 1989 .

[886]  P. Lachenbruch Statistical Power Analysis for the Behavioral Sciences (2nd ed.) , 1989 .

[887]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[888]  Anthony E. Kelly,et al.  Studies of Diagnosis and Remediation with High School Algebra Students , 1989, Cogn. Sci..

[889]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[890]  Robert W. Irving,et al.  The Stable marriage problem - structure and algorithms , 1989, Foundations of computing series.

[891]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[892]  Hans-Hermann Bock,et al.  Probabilistic Aspects in Cluster Analysis , 1989 .

[893]  Y. Fukuyama,et al.  A new method of choosing the number of clusters for the fuzzy c-mean method , 1989 .

[894]  W. Bruce Croft,et al.  Inference networks for document retrieval , 1989, SIGIR '90.

[895]  Geoffrey J. McLachlan,et al.  Mixture models : inference and applications to clustering , 1989 .

[896]  Gary James Jason,et al.  The Logic of Scientific Discovery , 1988 .

[897]  Ronald L. Rivest,et al.  Training a 3-node neural network is NP-complete , 1988, COLT '88.

[898]  M. Ichino General Metrics For Mixed Features The Cartesian Space Theory For Pattern Recognition , 1988, Proceedings of the 1988 IEEE International Conference on Systems, Man, and Cybernetics.

[899]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[900]  J. A. Studier,et al.  A note on the neighbor-joining algorithm of Saitou and Nei. , 1988, Molecular biology and evolution.

[901]  Robert M. Losee,et al.  Integrating Boolean queries in conjunctive normal form with probabilistic retrieval models , 1988, Inf. Process. Manag..

[902]  Linda Lamb Learning the VI Editor , 1988 .

[903]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[904]  A. Madansky Identification of Outliers , 1988 .

[905]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[906]  W. T. Tucker,et al.  Convergence theory for fuzzy c-means: Counterexamples and repairs , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[907]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[908]  A. D. Gordon A Review of Hierarchical Classification , 1987 .

[909]  Stephen Grossberg,et al.  Competitive Learning: From Interactive Activation to Adaptive Resonance , 1987, Cogn. Sci..

[910]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[911]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[912]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[913]  Sam Kash Kachigan Statistical Analysis: An Interdisciplinary Introduction to Univariate & Multivariate Methods , 1986 .

[914]  R. H. Myers Classical and modern regression with applications , 1986 .

[915]  Shokri Z. Selim,et al.  Fuzzy c-means: Optimality of solutions and effective termination of the algorithm , 1986, Pattern Recognit..

[916]  James C. Bezdek,et al.  Local convergence of the fuzzy c-Means algorithms , 1986, Pattern Recognit..

[917]  David Zipser,et al.  Feature Discovery by Competive Learning , 1986, Cogn. Sci..

[918]  Ibrahim A. Halloun,et al.  Common sense concepts about motion , 1985 .

[919]  Fionn Murtagh,et al.  Multidimensional clustering algorithms , 1985 .

[920]  David Zipser,et al.  Feature Discovery by Competive Learning , 1985, Cogn. Sci..

[921]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[922]  W. Grove Cluster Analysis for Social Scientists , 1984 .

[923]  Fionn Murtagh,et al.  Counting dendrograms: A survey , 1984, Discret. Appl. Math..

[924]  Shokri Z. Selim,et al.  K-Means-Type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[925]  Fionn Murtagh,et al.  A Survey of Recent Advances in Hierarchical Clustering Algorithms , 1983, Comput. J..

[926]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[927]  W. Peizhuang Pattern Recognition with Fuzzy Objective Function Algorithms (James C. Bezdek) , 1983 .

[928]  Dianne P. O'Leary,et al.  Digital Image Compression by Outer Product Expansion , 1983, IEEE Trans. Commun..

[929]  Steven W. Zucker,et al.  On the Foundations of Relaxation Labeling Processes , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[930]  J. Ross Quinlan,et al.  Learning Efficient Classification Procedures and Their Application to Chess End Games , 1983 .

[931]  John Aitchison,et al.  The Statistical Analysis of Compositional Data , 1986 .

[932]  Julie Scoltock,et al.  A Survey of the Literature of Cluster Analysis , 1982, Comput. J..

[933]  Morris Krieger,et al.  The C Primer , 1982 .

[934]  Gerard Salton,et al.  Research and Development in Information Retrieval , 1982, Lecture Notes in Computer Science.

[935]  Ganapati P. Patil,et al.  Statistical Distributions in Scientific Work , 1981 .

[936]  Willi Hock,et al.  Lecture Notes in Economics and Mathematical Systems , 1981 .

[937]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[938]  J. Nash Compact Numerical Methods for Computers , 2018 .

[939]  G. Milligan Ultrametric hierarchical clustering algorithms , 1979 .

[940]  N. Fisher,et al.  Efficient Simulation of the von Mises Distribution , 1979 .

[941]  L. A. Goodman,et al.  Measures of association for cross classifications , 1979 .

[942]  W. Warde,et al.  A mathematical comparison of the members of an infinite family of agglomerative clustering algorithms , 1979 .

[943]  D. Binder Bayesian cluster analysis , 1978 .

[944]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[945]  M. Jambu Classification automatique pour l'analyse des données , 1978 .

[946]  Herbert A. Simon,et al.  Information-Processing Theory of Human Problem Solving , 1978 .

[947]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[948]  Van Rijsbergen,et al.  A theoretical basis for the use of co-occurence data in information retrieval , 1977 .

[949]  C. F. Banfield Algorithm AS 102: Ultrametric Distances for a Single Linkage Dendrogram , 1976 .

[950]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..

[951]  Jacob Cohen,et al.  Applied multiple regression/correlation analysis for the behavioral sciences , 1979 .

[952]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[953]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[954]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[955]  J. Dunn Well-Separated Clusters and Optimal Fuzzy Partitions , 1974 .

[956]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[957]  D. E. Amos,et al.  Computation of modified Bessel functions and their ratios , 1974 .

[958]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[959]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[960]  Peter H. A. Sneath,et al.  Numerical Taxonomy: The Principles and Practice of Numerical Classification , 1973 .

[961]  E. J. Bijnen Cluster analysis : survey and evaluation of techniques , 1973 .

[962]  Robin Sibson,et al.  SLINK: An Optimally Efficient Algorithm for the Single-Link Cluster Method , 1973, Comput. J..

[963]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[964]  James C. Bezdek,et al.  Fuzzy mathematics in pattern classification , 1973 .

[965]  K. Mardia Statistics of Directional Data , 1972 .

[966]  J. Gower A General Coefficient of Similarity and Some of Its Properties , 1971 .

[967]  A. Scott,et al.  Clustering methods based on likelihood ratio criteria. , 1971 .

[968]  R. M. Cormack,et al.  A Review of Classification , 1971 .

[969]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[970]  Michael J. Maher,et al.  Statistics for Technology. , 1979 .

[971]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[972]  J. Wolfe PATTERN CLUSTERING BY MULTIVARIATE MIXTURE ANALYSIS. , 1970, Multivariate behavioral research.

[973]  R. Rummel Applied Factor Analysis , 1970 .

[974]  R C Durfee,et al.  A METHOD OF CLUSTER ANALYSIS. , 1970, Multivariate behavioral research.

[975]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[976]  N. E. Day Estimating the components of a mixture of normal distributions , 1969 .

[977]  J. Gower,et al.  Minimum Spanning Trees and Single Linkage Cluster Analysis , 1969 .

[978]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry , 1969 .

[979]  J. Carmichael,et al.  FINDING NATURAL CLUSTERS , 1968 .

[980]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[981]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[982]  Donald G. Morrison,et al.  Measurement Problems in Cluster Analysis , 1967 .

[983]  László Orlóci,et al.  An Agglomerative Method for Classification of Plant Communities , 1967 .

[984]  C. J. Jardine,et al.  The structure and construction of taxonomic hierarchies , 1967 .

[985]  G. N. Lance,et al.  A general theory of classificatory sorting strategies: II. Clustering systems , 1967, Comput. J..

[986]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[987]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[988]  R. Bellman,et al.  Abstraction and pattern classification , 1996 .

[989]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[990]  N. L. Johnson Linear Statistical Inference and Its Applications , 1966 .

[991]  R. Ausman,et al.  Selective dissemination of information. , 1965, Surgical forum.

[992]  W. T. Williams,et al.  Dissimilarity Analysis: a new Technique of Hierarchical Sub-division , 1964, Nature.

[993]  H. Ross Principles of Numerical Taxonomy , 1964 .

[994]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[995]  E. Nadaraya On Estimating Regression , 1964 .

[996]  Joe H. Ward,et al.  Application of an Hierarchical Grouping Procedure to a Problem of Grouping Profiles , 1963 .

[997]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[998]  G. A. Barnard,et al.  Transmission of Information: A Statistical Theory of Communications. , 1961 .

[999]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[1000]  Claude E. Shannon,et al.  Prediction and Entropy of Printed English , 1951 .

[1001]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[1002]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[1003]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[1004]  L. B.,et al.  Bessel Functions for Engineers , 1935, Nature.

[1005]  G. W. STEWARTt ON THE EARLY HISTORY OF THE SINGULAR VALUE DECOMPOSITION * , 2022 .