Control theoretic interpretation of directional motion preferences in optic flow processing interneurons

In this article, we formalize the processing of optic flow in identified fly lobula plate tangential cells and develop a control theoretic framework that suggests how the signals of these cells may be combined and used to achieve reflex-like navigation behavior. We show that this feedback gain synthesis task can be cast as a combined static state estimation and linear feedback control problem. Our framework allows us to analyze and determine the relationship between optic flow measurements and actuator commands, which greatly simplifies the implementation of biologically inspired control architectures on terrestrial and aerial robotic platforms.

[1]  K Hausen,et al.  Decoding of retinal image flow in insects. , 1993, Reviews of oculomotor research.

[2]  H. Krapp,et al.  Visuomotor Transformation in the Fly Gaze Stabilization System , 2008, PLoS biology.

[3]  R eid R. H arrison A Biologically Inspired Analog IC for Visual Collision Detection , .

[4]  Andrew M. Hyslop,et al.  Autonomous Navigation in Three-Dimensional Urban Environments Using Wide-Field Integration of Optic Flow , 2010 .

[5]  H G Krapp,et al.  Neuronal matched filters for optic flow processing in flying insects. , 2000, International review of neurobiology.

[6]  J. Zanker,et al.  Motion vision : computational, neural, and ecological constraints , 2001 .

[7]  R.G. Baraniuk,et al.  Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.

[8]  A. Borst,et al.  Neural networks in the cockpit of the fly , 2002, Journal of Comparative Physiology A.

[9]  Holger G. Krapp,et al.  Insect-Inspired Estimation of Egomotion , 2004, Neural Computation.

[10]  Hector Rotstein,et al.  Partial Aircraft State Estimation from Visual Motion Using the Subspace Constraints Approach , 2001 .

[11]  Dario Floreano,et al.  Fly-inspired visual steering of an ultralight indoor aircraft , 2006, IEEE Transactions on Robotics.

[12]  M. Egelhaaf On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly , 1985 .

[13]  Hanspeter A. Mallot,et al.  Biomimetic robot navigation , 2000, Robotics Auton. Syst..

[14]  Svetha Venkatesh,et al.  Robot navigation inspired by principles of insect vision , 1999, Robotics Auton. Syst..

[15]  Arthur J. Grunwald,et al.  Stability and Control of a Remotely Controlled Indoors Micro Hovering Vehicle , 2005 .

[16]  M. Egelhaaf On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly , 1985 .

[17]  Frank L. Lewis,et al.  Aircraft Control and Simulation , 1992 .

[18]  Pattie Maes,et al.  Maze Navigation Using Optical Flow , 1996 .

[19]  Holger G. Krapp,et al.  Wide-field, motion-sensitive neurons and matched filters for optic flow fields , 2000, Biological Cybernetics.

[20]  R Hengstenberg,et al.  Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. , 1998, Journal of neurophysiology.

[21]  Giulio Sandini,et al.  Divergent stereo in autonomous navigation: From bees to robots , 1995, International Journal of Computer Vision.

[22]  Richard M. Murray,et al.  Sensorimotor convergence in visual navigation and flight control systems , 2005 .

[23]  Michael H Dickinson,et al.  The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. , 2002, The Journal of experimental biology.

[24]  Andrew Duchon Maze Navigation Using Optical Flow , 1996 .

[25]  M Egelhaaf,et al.  On the Computations Analyzing Natural Optic Flow: Quantitative Model Analysis of the Blowfly Motion Vision Pathway , 2005, The Journal of Neuroscience.

[26]  M. Srinivasan,et al.  Visual motor computations in insects. , 2004, Annual review of neuroscience.

[27]  K. R. Hengstenberg The Number and Structure of Giant Vertical Cells (VS) in the Lobula Plate of the Blowfly , 2022 .

[28]  K. Hausen Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[29]  Holger G. Krapp,et al.  Neural encoding of behaviourally relevant visual-motion information in the fly , 2002, Trends in Neurosciences.

[30]  Idan Segev,et al.  Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons , 2007, Proceedings of the National Academy of Sciences.

[31]  Berthold K. P. Horn,et al.  Passive navigation , 1982, Comput. Vis. Graph. Image Process..

[32]  R. Hetherington The Perception of the Visual World , 1952 .

[33]  Holger G. Krapp,et al.  Extracting Egomotion from Optic Flow: Limits of Accuracy and Neural Matched Filters , 2001 .

[34]  R. Hengstenberg,et al.  Binocular contributions to optic flow processing in the fly visual system. , 2001, Journal of neurophysiology.

[35]  Robert J. Wood,et al.  The First Takeoff of a Biologically Inspired At-Scale Robotic Insect , 2008, IEEE Transactions on Robotics.

[36]  M. Wiener,et al.  Animal eyes. , 1957, The American orthoptic journal.

[37]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[38]  James Sean Humbert,et al.  Bioinspired Visuomotor Convergence , 2010, IEEE Transactions on Robotics.

[39]  R. Lind,et al.  State Estimation using Optical Flow from Parallax-Weighted Feature Tracking , 2006 .

[40]  Geoffrey L. Barrows,et al.  Flying insect inspired vision for autonomous aerial robot maneuvers in near-earth environments , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[41]  N. Franceschini,et al.  Two optic flow regulators for speed control and obstacle avoidance , 2006, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006..

[42]  Jean-Arcady Meyer,et al.  A contribution to vision-based autonomous helicopter flight in urban environments , 2005, Robotics Auton. Syst..

[43]  Richard J. Prazenica,et al.  Vision-Based State Estimation for Autonomous Micro Air Vehicles , 2004 .

[44]  A. Borst,et al.  Orientation tuning of motion-sensitive neurons shaped by vertical-horizontal network interactions , 2003, Journal of Comparative Physiology A.

[45]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[46]  Werner Reichardt,et al.  Evaluation of optical motion information by movement detectors , 1987, Journal of Comparative Physiology A.

[47]  Martin Herman,et al.  Real-time obstacle avoidance using central flow divergence and peripheral flow , 2017, Proceedings of IEEE International Conference on Computer Vision.

[48]  F. A. Miles,et al.  Visual Motion and Its Role in the Stabilization of Gaze , 1992 .

[49]  H. Krapp,et al.  Sensory Systems and Flight Stability: What do Insects Measure and Why? , 2007 .

[50]  Martin Egelhaaf,et al.  Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly , 2008, Biological Cybernetics.

[51]  J. V. van Hateren,et al.  Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons. , 2006, Journal of neurophysiology.

[52]  R. Hengstenberg,et al.  Estimation of self-motion by optic flow processing in single visual interneurons , 1996, Nature.

[53]  Nicolas H. Franceschini,et al.  A vision-based autopilot for a miniature air vehicle: joint speed control and lateral obstacle avoidance , 2008, Auton. Robots.

[54]  Zhang,et al.  Honeybee navigation en route to the goal: visual flight control and odometry , 1996, The Journal of experimental biology.

[55]  J. Koenderink,et al.  Facts on optic flow , 1987, Biological Cybernetics.

[56]  Gaurav S. Sukhatme,et al.  A comparison of two camera configurations for optic-flow based navigation of a UAV through urban canyons , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[57]  Antonis A. Argyros,et al.  Biomimetic centering behavior [mobile robots with panoramic sensors] , 2004, IEEE Robotics & Automation Magazine.

[58]  Klaus Hausen,et al.  Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[59]  A. Borst,et al.  Motion computation and visual orientation in flies. , 1993, Comparative biochemistry and physiology. Comparative physiology.

[60]  Giulio Sandini,et al.  Embedded visual behaviors for navigation , 1997, Robotics Auton. Syst..

[61]  R. Hengstenberg Multisensory control in insect oculomotor systems. , 1993, Reviews of oculomotor research.

[62]  N. Franceschini,et al.  From insect vision to robot vision , 1992 .

[63]  Greg L. Zacharias,et al.  Passive navigation from image sequences - A practitioner's approach , 1996 .

[64]  Javaan Chahl,et al.  Biologically inspired visual sensing and flight Control , 2003, The Aeronautical Journal (1968).