Minimal representation multisensor fusion using differential evolution

Fusion of information from multiple sensors is required for planning and control of robotic systems in complex environments. The minimal representation approach is based on an information measure as a universal yardstick for fusion and provides a framework for integrating information from a variety of sources. In this paper, we describe the principles of minimal representation multisensor fusion and evaluate a differential evolution approach to the search for solutions. Experiments in robot manipulation using both tactile and visual sensing demonstrate that this algorithm is effective in finding useful and practical solutions to this problem for real systems. Comparison of this differential evolution algorithm with more traditional genetic algorithms shows distinct advantages in both accuracy and efficiency.

[1]  Andrew R. Barron,et al.  Minimum complexity density estimation , 1991, IEEE Trans. Inf. Theory.

[2]  D. Plimmer,et al.  Sensing and Control , 1995 .

[3]  Arthur C. Sanderson,et al.  Multisensor fusion and unknown statistics , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[4]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[5]  Andrei N. Kolmogorov,et al.  Logical basis for information theory and probability theory , 1968, IEEE Trans. Inf. Theory.

[6]  Rajive Joshi,et al.  Minimal representation multisensor fusion using differential evolution , 1997 .

[7]  Rainer Storn,et al.  Differential evolution design of an IIR-filter , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[8]  A. C. Sanderson,et al.  Experimental studies on minimal representation multisensor fusion , 1997, 1997 8th International Conference on Advanced Robotics. Proceedings. ICAR'97.

[9]  Gregory D. Hager,et al.  Task-Directed Sensor Fusion and Planning , 1990 .

[10]  Hugh F. Durrant-Whyte,et al.  Consistent Integration and Propagation of Disparate Sensor Observations , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[11]  Arthur C. Sanderson,et al.  Shape matching from grasp using a minimal representation size criterion , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[12]  David B. Cooper,et al.  On Optimally Combining Pieces of Information, with Application to Estimating 3-D Complex-Object Position from Range Data , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Oussama Khatib,et al.  Object Localization with Multiple Sensors , 1988, Int. J. Robotics Res..

[14]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[15]  John Porrill,et al.  Optimal Combination and Constraints for Geometrical Sensor Data , 1988, Int. J. Robotics Res..

[16]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[17]  Rajive Joshi A minimal representation framework for multisensor fusion and model selection , 1998 .

[18]  Peter Cheeseman,et al.  On the Representation and Estimation of Spatial Uncertainty , 1986 .

[19]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[20]  Ren C. Luo,et al.  Multisensor integration and fusion in intelligent systems , 1989, IEEE Trans. Syst. Man Cybern..

[21]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part I , 1964, Inf. Control..

[22]  Arthur C. Sanderson,et al.  Attributed image matching using a minimum representation size criterion , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[23]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[24]  Rainer Storn,et al.  Minimizing the real functions of the ICEC'96 contest by differential evolution , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[25]  Arthur C. Sanderson,et al.  Model-based multisensor data fusion: a minimal representation approach , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[26]  Arthur C. Sanderson,et al.  Multisensor fusion and model selection using a minimal representation size framework , 1996, 1996 IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems (Cat. No.96TH8242).

[27]  K. V. Price,et al.  Differential evolution: a fast and simple numerical optimizer , 1996, Proceedings of North American Fuzzy Information Processing.

[28]  H. F. Durrant-White Consistent integration and propagation of disparate sensor observations , 1987 .

[29]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part II , 1964, Inf. Control..

[30]  K. H. Kim,et al.  Review of multisensor data fusion architectures and techniques , 1993, Proceedings of 8th IEEE International Symposium on Intelligent Control.

[31]  Gregory J. Chaitin,et al.  A recent technical report , 1974, SIGA.

[32]  Jorma Rissanen,et al.  Stochastic Complexity in Statistical Inquiry , 1989, World Scientific Series in Computer Science.

[33]  Peter K. Allen,et al.  Integrating Vision and Touch for Object Recognition Tasks , 1988, Int. J. Robotics Res..

[34]  Michael S. Ali,et al.  System description document for the Anthrobot-2: A dexterous robot hand , 1991 .

[35]  David B. Fogel,et al.  System Identification Through Simulated Evolution: A Machine Learning Approach to Modeling , 1991 .

[36]  Gregory D. Hager Task-Directed Sensor Fusion and Planning: A Computational Approach , 1990 .

[37]  A. Sanderson,et al.  Model inference and pattern discovery by minimal representation method , 1981 .

[38]  Thomas Bäck,et al.  A Survey of Evolution Strategies , 1991, ICGA.

[39]  Arthur C. Sanderson,et al.  Minimal representation multisensor fusion using differential evolution , 1997, Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA'97. 'Towards New Computational Principles for Robotics and Automation'.

[40]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.