Information Retrieval Technology: 15th Asia Information Retrieval Societies Conference, AIRS 2019, Hong Kong, China, November 7–9, 2019, Proceedings

This book constitutes the refereed proceedings of the 15th Information Retrieval Technology Conference, AIRS 2019, held in Hong Kong, China, in November 2019.The 14 full papers presented together with 3 short papers were carefully reviewed and selected from 27 submissions. The scope of the conference covers applications, systems, technologies and theory aspects of information retrieval in text, audio, image, video and multimedia data.

[1]  W. Bruce Croft,et al.  Neural Ranking Models with Weak Supervision , 2017, SIGIR.

[2]  J. Shane Culpepper,et al.  Revisiting Spam Filtering in Web Search , 2018, ADCS.

[3]  Thorsten Joachims,et al.  Training linear SVMs in linear time , 2006, KDD '06.

[4]  Su-Cheng Haw,et al.  Comparing DBpedia, Wikidata, and YAGO for Web Information Retrieval , 2019 .

[5]  W. Bruce Croft,et al.  Ranking Documents by Answer-Passage Quality , 2018, SIGIR.

[6]  Chi-Yin Chow,et al.  iGSLR: personalized geo-social location recommendation: a kernel density estimation approach , 2013, SIGSPATIAL/GIS.

[7]  Arkaitz Zubiaga,et al.  Detection and Resolution of Rumours in Social Media , 2017, ACM Comput. Surv..

[8]  Jian Su,et al.  Supervised and Traditional Term Weighting Methods for Automatic Text Categorization , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Tetsuya Sakai Unanimity-Aware Gain for Highly Subjective Assessments , 2017, EVIA@NTCIR.

[10]  Hoang Long Nguyen,et al.  Social event decomposition for constructing knowledge graph , 2019, Future Gener. Comput. Syst..

[11]  Qiaozhu Mei,et al.  Enquiring Minds: Early Detection of Rumors in Social Media from Enquiry Posts , 2015, WWW.

[12]  Andrew Y. Ng,et al.  Parsing Natural Scenes and Natural Language with Recursive Neural Networks , 2011, ICML.

[13]  Eugene Agichtein,et al.  Predicting information seeker satisfaction in community question answering , 2008, SIGIR '08.

[14]  Qing Yang,et al.  Predicting Best Answerers for New Questions in Community Question Answering , 2010, WAIM.

[15]  Fabio Crestani,et al.  A Joint Two-Phase Time-Sensitive Regularized Collaborative Ranking Model for Point of Interest Recommendation , 2019, IEEE Transactions on Knowledge and Data Engineering.

[16]  Tamer Elsayed,et al.  Improving Arabic Microblog Retrieval with Distributed Representations , 2019, AIRS.

[17]  Quoc V. Le,et al.  Distributed Representations of Sentences and Documents , 2014, ICML.

[18]  Cícero Nogueira dos Santos,et al.  Learning Character-level Representations for Part-of-Speech Tagging , 2014, ICML.

[19]  Justin Zobel,et al.  How reliable are the results of large-scale information retrieval experiments? , 1998, SIGIR '98.

[20]  Barbara Poblete,et al.  Information credibility on twitter , 2011, WWW.

[21]  Mohsen Afsharchi,et al.  A social recommendation method based on an adaptive neighbor selection mechanism , 2017, Inf. Process. Manag..

[22]  James Fan,et al.  Learning to rank for robust question answering , 2012, CIKM.

[23]  Dragomir R. Radev,et al.  Rumor has it: Identifying Misinformation in Microblogs , 2011, EMNLP.

[24]  Alistair Moffat,et al.  A similarity measure for indefinite rankings , 2010, TOIS.

[25]  Craig MacDonald,et al.  Hypothesis testing for the risk-sensitive evaluation of retrieval systems , 2014, SIGIR.

[26]  Jürgen Schmidhuber,et al.  Framewise phoneme classification with bidirectional LSTM and other neural network architectures , 2005, Neural Networks.

[27]  Ling Liu,et al.  Encyclopedia of Database Systems , 2009, Encyclopedia of Database Systems.

[28]  W. Bruce Croft,et al.  A Deep Relevance Matching Model for Ad-hoc Retrieval , 2016, CIKM.

[29]  Jonathan G. Fiscus,et al.  Topic detection and tracking evaluation overview , 2002 .

[30]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[31]  Arkaitz Zubiaga,et al.  Learning Reporting Dynamics during Breaking News for Rumour Detection in Social Media , 2016, ArXiv.

[32]  Tetsuya Sakai,et al.  Metrics, Statistics, Tests , 2013, PROMISE Winter School.

[33]  Nick Craswell,et al.  Learning to Match using Local and Distributed Representations of Text for Web Search , 2016, WWW.

[34]  Murat Saraclar,et al.  Lattice Indexing for Spoken Term Detection , 2011, IEEE Transactions on Audio, Speech, and Language Processing.

[35]  Xueqi Cheng,et al.  Text Matching as Image Recognition , 2016, AAAI.

[36]  Rohini K. Srihari,et al.  Biterm language models for document retrieval , 2002, SIGIR '02.

[37]  Xiaoli Li,et al.  Rank-GeoFM: A Ranking based Geographical Factorization Method for Point of Interest Recommendation , 2015, SIGIR.

[38]  W. Bruce Croft,et al.  A Markov random field model for term dependencies , 2005, SIGIR '05.

[39]  Zhiyuan Liu,et al.  End-to-End Neural Ad-hoc Ranking with Kernel Pooling , 2017, SIGIR.

[40]  W. Bruce Croft,et al.  Beyond Factoid QA: Effective Methods for Non-factoid Answer Sentence Retrieval , 2016, ECIR.

[41]  Christopher C. Johnson Logistic Matrix Factorization for Implicit Feedback Data , 2014 .

[42]  Scott Dick,et al.  Incorporating Spatial, Temporal, and Social Context in Recommendations for Location-Based Social Networks , 2016, IEEE Transactions on Computational Social Systems.

[43]  Matthew D. Zeiler ADADELTA: An Adaptive Learning Rate Method , 2012, ArXiv.

[44]  Hend Suliman Al-Khalifa,et al.  An experimental system for measuring the credibility of news content in Twitter , 2011, Int. J. Web Inf. Syst..

[45]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[46]  Xiaoyong Du,et al.  Weighted Neural Bag-of-n-grams Model: New Baselines for Text Classification , 2016, COLING.

[47]  Urvesh Bhowan,et al.  Genetic Programming for Feature Selection and Question-Answer Ranking in IBM Watson , 2015, EuroGP.

[48]  Michael Weintraub,et al.  Keyword-spotting using SRI's DECIPHER large-vocabulary speech-recognition system , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[49]  W. Bruce Croft,et al.  A framework to predict the quality of answers with non-textual features , 2006, SIGIR.

[50]  Bhaskar Mitra,et al.  Improving Document Ranking with Dual Word Embeddings , 2016, WWW.

[51]  David E. Losada,et al.  When to stop making relevance judgments? A study of stopping methods for building information retrieval test collections , 2018, J. Assoc. Inf. Sci. Technol..

[52]  Tapas Kanungo,et al.  Machine Learned Sentence Selection Strategies for Query-Biased Summarization , 2008 .

[53]  Suhrid Balakrishnan,et al.  Collaborative ranking , 2012, WSDM '12.

[54]  Jun Wang,et al.  Bias-variance decomposition of ir evaluation , 2013, SIGIR.

[55]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[56]  Jun Wang,et al.  Generalized Bias-Variance Evaluation of TREC Participated Systems , 2014, CIKM.

[57]  A. Tversky,et al.  Advances in prospect theory: Cumulative representation of uncertainty , 1992 .

[58]  Hang Li,et al.  Convolutional Neural Network Architectures for Matching Natural Language Sentences , 2014, NIPS.

[59]  Fred Popowich,et al.  QA2Explanation: Generating and Evaluating Explanations for Question Answering Systems over Knowledge Graph , 2018, INTEXSEMPAR.

[60]  Chao Liu,et al.  Mining Control Flow Abnormality for Logic Error Isolation , 2006, SDM.

[61]  Luo Si,et al.  A probabilistic graphical model for joint answer ranking in question answering , 2007, SIGIR.

[62]  Mohammed Abdellaoui,et al.  Eliciting Prospect Theory When Consequences Are Measured in Time Units: "Time Is Not Money" , 2014, Manag. Sci..

[63]  Jakob Grue Simonsen,et al.  Non-Compositional Term Dependence for Information Retrieval , 2015, SIGIR.

[64]  Roberto Basili,et al.  Exploiting Syntactic and Shallow Semantic Kernels for Question Answer Classification , 2007, ACL.

[65]  Fabio Crestani,et al.  Venue Appropriateness Prediction for Personalized Context-Aware Venue Suggestion , 2017, SIGIR.

[66]  Andrew Whinston,et al.  The Dynamics of Online Word-of-Mouth and Product Sales: An Empirical Investigation of the Movie Industry , 2008 .

[67]  Xiaomo Liu,et al.  Real-time Rumor Debunking on Twitter , 2015, CIKM.

[68]  Peng Jiang,et al.  Multi-Source Pointer Network for Product Title Summarization , 2018, CIKM.

[69]  Bo Pang,et al.  Seeing Stars: Exploiting Class Relationships for Sentiment Categorization with Respect to Rating Scales , 2005, ACL.

[70]  Wei Gao,et al.  Rumor Detection on Twitter with Tree-structured Recursive Neural Networks , 2018, ACL.

[71]  Raquel Trillo Lado,et al.  Wikidata and DBpedia: A Comparative Study , 2017, International KEYSTONE Conference.

[72]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[73]  Gareth J. F. Jones,et al.  Representing Documents and Queries as Sets of Word Embedded Vectors for Information Retrieval , 2016, ArXiv.

[74]  Jun Zhao,et al.  Inner Attention based Recurrent Neural Networks for Answer Selection , 2016, ACL.

[75]  James Mayfield,et al.  Comparing cross-language query expansion techniques by degrading translation resources , 2002, SIGIR '02.

[76]  L. Harlow,et al.  What if there were no significance tests , 1997 .

[77]  Yann LeCun,et al.  Very Deep Convolutional Networks for Natural Language Processing , 2016, ArXiv.

[78]  Jason J. Jung,et al.  Detecting Emerging Rumors by Embedding Propagation Graphs , 2019, AIRS.

[79]  Douglas W. Oard,et al.  Probabilistic structured query methods , 2003, SIGIR.

[80]  Peng Zhang,et al.  IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models , 2017, SIGIR.

[81]  Vincent Ng,et al.  Modeling and Prediction of Online Product Review Helpfulness: A Survey , 2018, ACL.

[82]  M. de Rijke,et al.  Short Text Similarity with Word Embeddings , 2015, CIKM.

[83]  Tiejun Zhao,et al.  HIT at TREC 2012 Microblog Track , 2012, TREC.

[84]  Tatsuya Harada,et al.  DualNet: Domain-invariant network for visual question answering , 2017, 2017 IEEE International Conference on Multimedia and Expo (ICME).

[85]  Phil Blunsom,et al.  A Convolutional Neural Network for Modelling Sentences , 2014, ACL.

[86]  Jun Zhou,et al.  Multi-Domain Gated CNN for Review Helpfulness Prediction , 2019, WWW.

[87]  Paul N. Bennett,et al.  Robust ranking models via risk-sensitive optimization , 2012, SIGIR '12.

[88]  Daniele Bonadiman,et al.  Convolutional Neural Networks vs. Convolution Kernels: Feature Engineering for Answer Sentence Reranking , 2016, NAACL.

[89]  Huan Liu,et al.  Exploring temporal effects for location recommendation on location-based social networks , 2013, RecSys.

[90]  W. Bruce Croft,et al.  Indri : A language-model based search engine for complex queries ( extended version ) , 2005 .

[91]  Gokhan Tur,et al.  Spoken Language Understanding: Systems for Extracting Semantic Information from Speech , 2011 .

[92]  Craig MacDonald,et al.  University of Glasgow at TREC 2014: Experiments with Terrier in Contextual Suggestion, Temporal Summarisation and Web Tracks , 2014, TREC.

[93]  Joost Berkhout Google's PageRank algorithm for ranking nodes in general networks , 2016, 2016 13th International Workshop on Discrete Event Systems (WODES).

[94]  José Rodríguez,et al.  An Attention Mechanism for Neural Answer Selection Using a Combined Global and Local View , 2017, 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI).

[95]  Kazuhiro Seki,et al.  Improving pseudo-relevance feedback via tweet selection , 2013, CIKM.

[96]  Falk Scholer,et al.  User performance versus precision measures for simple search tasks , 2006, SIGIR.

[97]  J. Shane Culpepper,et al.  Towards Efficient and Effective Query Variant Generation , 2018, DESIRES.

[98]  Cheng Luo,et al.  Overview of the NTCIR-13 We Want Web Task , 2017, NTCIR.

[99]  Tomas Mikolov,et al.  Bag of Tricks for Efficient Text Classification , 2016, EACL.

[100]  David Carmel,et al.  Query Expansion for Email Search , 2017, SIGIR.

[101]  James Philbin,et al.  FaceNet: A unified embedding for face recognition and clustering , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[102]  Fabio Crestani,et al.  A Collaborative Ranking Model with Multiple Location-based Similarities for Venue Suggestion , 2018, ICTIR.

[103]  Gareth J. F. Jones,et al.  Overview of the CLEF-2005 Cross-Language Speech Retrieval Track , 2005, CLEF.

[104]  J. Shane Culpepper,et al.  Risk-Reward Trade-offs in Rank Fusion , 2017, ADCS.

[105]  Eugene Agichtein,et al.  Finding the right facts in the crowd: factoid question answering over social media , 2008, WWW.

[106]  Wei Gao,et al.  Detect Rumors in Microblog Posts Using Propagation Structure via Kernel Learning , 2017, ACL.

[107]  Hugo Zaragoza,et al.  The Probabilistic Relevance Framework: BM25 and Beyond , 2009, Found. Trends Inf. Retr..

[108]  Ido Dagan,et al.  context2vec: Learning Generic Context Embedding with Bidirectional LSTM , 2016, CoNLL.

[109]  Timothy J. Hazen,et al.  Retrieval and browsing of spoken content , 2008, IEEE Signal Processing Magazine.

[110]  Jaap Kamps,et al.  University of Amsterdam at TREC 2014: Contextual Suggestion and Web Tracks , 2014 .

[111]  Christopher J. C. Burges,et al.  From RankNet to LambdaRank to LambdaMART: An Overview , 2010 .

[112]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[113]  Bowen Zhou,et al.  Improved Representation Learning for Question Answer Matching , 2016, ACL.

[114]  Yoon Kim,et al.  Convolutional Neural Networks for Sentence Classification , 2014, EMNLP.

[115]  Xiaoyong Du,et al.  Initializing Convolutional Filters with Semantic Features for Text Classification , 2017, EMNLP.

[116]  Teruko Mitamura,et al.  Language-independent Probabilistic Answer Ranking for Question Answering , 2007, ACL.

[117]  Alan Hanjalic,et al.  Statistical Significance Testing in Information Retrieval: An Empirical Analysis of Type I, Type II and Type III Errors , 2019, SIGIR.

[118]  Haoran Xie,et al.  A Weighted Word Embedding Model for Text Classification , 2019, DASFAA.

[119]  Noriko Kando,et al.  On information retrieval metrics designed for evaluation with incomplete relevance assessments , 2008, Information Retrieval.

[120]  Richard M. Schwartz,et al.  Neural-Network Lexical Translation for Cross-lingual IR from Text and Speech , 2019, SIGIR.

[121]  Kenny Q. Zhu,et al.  False rumors detection on Sina Weibo by propagation structures , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[122]  Nan Hua,et al.  Universal Sentence Encoder , 2018, ArXiv.

[123]  Jaana Kekäläinen,et al.  Cumulated gain-based evaluation of IR techniques , 2002, TOIS.

[124]  Zhiyuan Liu,et al.  Convolutional Neural Networks for Soft-Matching N-Grams in Ad-hoc Search , 2018, WSDM.

[125]  Van Hai Do,et al.  A study on LVCSR and keyword search for tagalog , 2013, INTERSPEECH.

[126]  Noriko Kando,et al.  Evaluation of Information Access Technologies at NTCIR Workshop , 2003, CLEF.

[127]  Wei Xu,et al.  Bidirectional LSTM-CRF Models for Sequence Tagging , 2015, ArXiv.

[128]  Yehuda Koren,et al.  Factor in the neighbors: Scalable and accurate collaborative filtering , 2010, TKDD.

[129]  Alistair Moffat,et al.  Score standardization for inter-collection comparison of retrieval systems , 2008, SIGIR '08.

[130]  Christopher D. Manning,et al.  Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character Models , 2016, ACL.

[131]  Madhumangal Pal,et al.  Study on centrality measures in social networks: a survey , 2018, Social Network Analysis and Mining.

[132]  Tao Wang,et al.  Entropy-Based Term Weighting Schemes for Text Categorization in VSM , 2015, 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI).

[133]  Ryen W. White,et al.  Overview of the CLEF-2006 Cross-Language Speech Retrieval Track , 2006, CLEF.

[134]  Tetsuya Sakai,et al.  Statistical Significance, Power, and Sample Sizes: A Systematic Review of SIGIR and TOIS, 2006-2015 , 2016, SIGIR.

[135]  Tamer Elsayed,et al.  EveTAR: building a large-scale multi-task test collection over Arabic tweets , 2017, Information Retrieval Journal.

[136]  Katrina Fenlon,et al.  Improving retrieval of short texts through document expansion , 2012, SIGIR '12.

[137]  Said Ouatik El Alaoui,et al.  Word-embedding-based pseudo-relevance feedback for Arabic information retrieval , 2018, J. Inf. Sci..

[138]  Alessandro Moschitti,et al.  Building structures from classifiers for passage reranking , 2013, CIKM.

[139]  Brendan T. O'Connor,et al.  Understanding the Representational Power of Neural Retrieval Models Using NLP Tasks , 2018, ICTIR.

[140]  Ryen W. White,et al.  Overview of the CLEF-2005 Cross-Language Speech Retrieval Track , 2005, CLEF.

[141]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[142]  Fabio Crestani,et al.  Personalized Context-Aware Point of Interest Recommendation , 2018, ACM Trans. Inf. Syst..

[143]  Yelong Shen,et al.  A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval , 2014, CIKM.

[144]  Mark J. F. Gales,et al.  Automatic Speech Recognition System Development in the "Wild" , 2018, INTERSPEECH.

[145]  Christopher D. Manning,et al.  Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks , 2015, ACL.

[146]  Mohsen Afsharchi,et al.  A novel approach based on multi-view reliability measures to alleviate data sparsity in recommender systems , 2019, Multimedia Tools and Applications.

[147]  Bowen Zhou,et al.  LSTM-based Deep Learning Models for non-factoid answer selection , 2015, ArXiv.

[148]  Ben Carterette,et al.  Million Query Track 2007 Overview , 2008, TREC.

[149]  Charles L. A. Clarke,et al.  Efficient construction of large test collections , 1998, SIGIR '98.

[150]  Ryan Cotterell,et al.  Morphological Word-Embeddings , 2019, NAACL.

[151]  Oren Kurland,et al.  Utilizing Passage-Based Language Models for Document Retrieval , 2008, ECIR.

[152]  Tamer Elsayed,et al.  QU at TREC-2014: Online Clustering with Temporal and Topical Expansion for Tweet Timeline Generation , 2014, TREC.

[153]  S. Dewitte,et al.  Time-based versus money-based decision making under risk: An experimental investigation , 2015 .

[154]  Benjamin C. M. Fung,et al.  Detecting breaking news rumors of emerging topics in social media , 2020, Inf. Process. Manag..

[155]  Traian Rebedea,et al.  Sentence selection with neural networks using string kernels , 2017, KES.

[156]  Yue Lu,et al.  Exploiting user profile information for answer ranking in cQA , 2012, WWW.

[157]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[158]  Alessandro Moschitti,et al.  Learning to Rank Short Text Pairs with Convolutional Deep Neural Networks , 2015, SIGIR.

[159]  Tetsuya Sakai,et al.  Classifying Community QA Questions That Contain an Image , 2018, ICTIR.

[160]  Heiko Paulheim,et al.  Knowledge graph refinement: A survey of approaches and evaluation methods , 2016, Semantic Web.

[161]  Jin Wang,et al.  Combining Knowledge with Deep Convolutional Neural Networks for Short Text Classification , 2017, IJCAI.

[162]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[163]  Andrew McCallum,et al.  Maximum Entropy Markov Models for Information Extraction and Segmentation , 2000, ICML.

[164]  Stefanos Zafeiriou,et al.  ArcFace: Additive Angular Margin Loss for Deep Face Recognition , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[165]  Jian-Yun Nie,et al.  Empirical Study of Multi-level Convolution Models for IR Based on Representations and Interactions , 2018, ICTIR.

[166]  John D. Lafferty,et al.  A study of smoothing methods for language models applied to Ad Hoc information retrieval , 2001, SIGIR '01.

[167]  Xueqi Cheng,et al.  A Study of MatchPyramid Models on Ad-hoc Retrieval , 2016, ArXiv.

[168]  Christopher Potts,et al.  Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank , 2013, EMNLP.

[169]  J. Shane Culpepper,et al.  Presentation Ordering Effects On Assessor Agreement , 2018, CIKM.

[170]  Francesco Romani,et al.  Ranking a stream of news , 2005, WWW '05.

[171]  Lei Guo,et al.  Location Regularization-Based POI Recommendation in Location-Based Social Networks , 2018, Inf..

[172]  Chandra Bhagavatula,et al.  Semi-supervised sequence tagging with bidirectional language models , 2017, ACL.

[173]  Chunyan Miao,et al.  Personalized point-of-interest recommendation by mining users' preference transition , 2013, CIKM.

[174]  Alessandro Moschitti,et al.  Automatic Feature Engineering for Answer Selection and Extraction , 2013, EMNLP.

[175]  Lin-shan Lee,et al.  Spoken document understanding and organization , 2005, IEEE Signal Processing Magazine.

[176]  Jinxi Xu,et al.  Cross-lingual Information Retrieval Using Hidden Markov Models , 2000, EMNLP.

[177]  David A. Hull Using Structured Queries for Disambiguation in Cross-Language Information Retrieval , 1997 .

[178]  R. Rosenthal The file drawer problem and tolerance for null results , 1979 .

[179]  Stephen E. Robertson,et al.  Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval , 1994, SIGIR '94.

[180]  Richard M. Schwartz,et al.  Score normalization and system combination for improved keyword spotting , 2013, 2013 IEEE Workshop on Automatic Speech Recognition and Understanding.

[181]  Craig MacDonald,et al.  Tackling Biased Baselines in the Risk-Sensitive Evaluation of Retrieval Systems , 2014, ECIR.

[182]  Wenpu Xing,et al.  Weighted PageRank algorithm , 2004, Proceedings. Second Annual Conference on Communication Networks and Services Research, 2004..

[183]  Zhong Zhou,et al.  Tweet2Vec: Character-Based Distributed Representations for Social Media , 2016, ACL.

[184]  Christopher D. Manning,et al.  Baselines and Bigrams: Simple, Good Sentiment and Topic Classification , 2012, ACL.

[185]  W. Bruce Croft,et al.  Evaluation of an inference network-based retrieval model , 1991, TOIS.

[186]  Walid Magdy,et al.  Hyperlink-extended pseudo relevance feedback for improved microblog retrieval , 2014, SoMeRA@SIGIR.

[187]  Eugene Agichtein,et al.  Overview of the TREC 2016 LiveQA Track , 2016, TREC.

[188]  Hermann Ney,et al.  A Systematic Comparison of Various Statistical Alignment Models , 2003, CL.

[189]  Claudia Niederée,et al.  Multihop Attention Networks for Question Answer Matching , 2018, SIGIR.

[190]  Alessandro Moschitti,et al.  Learning Adaptable Patterns for Passage Reranking , 2013, CoNLL.

[191]  Tetsuya Sakai,et al.  How to Run an Evaluation Task - With a Primary Focus on Ad Hoc Information Retrieval , 2019, Information Retrieval Evaluation in a Changing World.

[192]  Samhaa R. El-Beltagy,et al.  AraVec: A set of Arabic Word Embedding Models for use in Arabic NLP , 2017, ACLING.

[193]  Tiejun Huang,et al.  A ranking SVM based fusion model for cross-media meta-search engine , 2010, Journal of Zhejiang University SCIENCE C.

[194]  W. Bruce Croft,et al.  Embedding-based Query Language Models , 2016, ICTIR.

[195]  Michael R. Lyu,et al.  Fused Matrix Factorization with Geographical and Social Influence in Location-Based Social Networks , 2012, AAAI.

[196]  Jennifer Chu-Carroll,et al.  Building Watson: An Overview of the DeepQA Project , 2010, AI Mag..

[197]  Karen Spärck Jones A statistical interpretation of term specificity and its application in retrieval , 2021, J. Documentation.

[198]  Zhoujun Li,et al.  Sequential Match Network: A New Architecture for Multi-turn Response Selection in Retrieval-based Chatbots , 2016, ArXiv.

[199]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[200]  David E. Losada,et al.  Feeling lucky?: multi-armed bandits for ordering judgements in pooling-based evaluation , 2016, SAC.

[201]  Md. Mustafizur Rahman,et al.  Neural information retrieval: at the end of the early years , 2017, Information Retrieval Journal.

[202]  Jun Wang,et al.  Portfolio theory of information retrieval , 2009, SIGIR.

[203]  Zhidong Deng,et al.  Densely Connected CNN with Multi-scale Feature Attention for Text Classification , 2018, IJCAI.

[204]  Panagiotis G. Ipeirotis,et al.  Estimating the Helpfulness and Economic Impact of Product Reviews: Mining Text and Reviewer Characteristics , 2010, IEEE Transactions on Knowledge and Data Engineering.

[205]  Donna K. Harman,et al.  The TREC Test Collections , 2005 .

[206]  Talel Abdessalem,et al.  POI Recommendation: Towards Fused Matrix Factorization with Geographical and Temporal Influences , 2015, RecSys.

[207]  Edel Garcia Latent Semantic Indexing (LSI) A Fast Track Tutorial , 2006 .

[208]  Haoran Xie,et al.  Weighted N-grams CNN for Text Classification , 2019, AIRS.

[209]  Lei Guo,et al.  Location perspective-based neighborhood-aware POI recommendation in location-based social networks , 2019, Soft Comput..

[210]  Jason J. Jung,et al.  Exploiting geotagged resources to spatial ranking by extending HITS algorithm , 2015, Comput. Sci. Inf. Syst..

[211]  Justin Zobel,et al.  Writing for Computer Science , 2014, Springer London.

[212]  Joemon M. Jose,et al.  Joint Geo-Spatial Preference and Pairwise Ranking for Point-of-Interest Recommendation , 2016, 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI).

[213]  Nadir Durrani,et al.  Farasa: A Fast and Furious Segmenter for Arabic , 2016, NAACL.

[214]  Yueting Zhuang,et al.  Community-Based Question Answering via Asymmetric Multi-Faceted Ranking Network Learning , 2017, AAAI.

[215]  Guoyin Wang,et al.  Baseline Needs More Love: On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms , 2018, ACL.

[216]  Jian-Yun Nie,et al.  Multi-level Abstraction Convolutional Model with Weak Supervision for Information Retrieval , 2018, SIGIR.

[217]  David A. Hull Using statistical testing in the evaluation of retrieval experiments , 1993, SIGIR.

[218]  Yelong Shen,et al.  Learning semantic representations using convolutional neural networks for web search , 2014, WWW.

[219]  Mao Ye,et al.  Exploiting geographical influence for collaborative point-of-interest recommendation , 2011, SIGIR.

[220]  Daben Liu,et al.  Speech and language technologies for audio indexing and retrieval , 2000, Proceedings of the IEEE.

[221]  Xiang Ji,et al.  MatchZoo: A Learning, Practicing, and Developing System for Neural Text Matching , 2019, SIGIR.

[222]  Bhaskar Mitra,et al.  An Introduction to Neural Information Retrieval , 2018, Found. Trends Inf. Retr..

[223]  Nelson Morgan,et al.  The TAO of ATWV: Probing the mysteries of keyword search performance , 2013, 2013 IEEE Workshop on Automatic Speech Recognition and Understanding.

[224]  Tao Qin,et al.  LETOR: A benchmark collection for research on learning to rank for information retrieval , 2010, Information Retrieval.

[225]  Chin-Yew Lin,et al.  ROUGE: A Package for Automatic Evaluation of Summaries , 2004, ACL 2004.

[226]  Mohsen Afsharchi,et al.  Category-Aware Location Embedding for Point-of-Interest Recommendation , 2019, ICTIR.

[227]  Fan Yang,et al.  Automatic detection of rumor on Sina Weibo , 2012, MDS '12.

[228]  James P. Callan,et al.  Learning to Reweight Terms with Distributed Representations , 2015, SIGIR.

[229]  Heiko Paulheim,et al.  One Knowledge Graph to Rule Them All? Analyzing the Differences Between DBpedia, YAGO, Wikidata & co , 2017, KI.

[230]  Soo-Min Kim,et al.  Automatically Assessing Review Helpfulness , 2006, EMNLP.

[231]  Kam-Fai Wong,et al.  Ranking model selection and fusion for effective microblog search , 2014, SoMeRA@SIGIR.

[232]  Xiaodong Cui,et al.  DEVELOPING KEYWORD SEARCH UNDER THE IARPA BABEL PROGRAM , 2013 .

[233]  Thierson Couto,et al.  Incorporating Risk-Sensitiveness into Feature Selection for Learning to Rank , 2016, CIKM.

[234]  Jason Weston,et al.  Natural Language Processing (Almost) from Scratch , 2011, J. Mach. Learn. Res..

[235]  Yi Chang,et al.  Adversarial Sampling and Training for Semi-Supervised Information Retrieval , 2018, WWW.

[236]  Ellen M. Voorhees,et al.  The Philosophy of Information Retrieval Evaluation , 2001, CLEF.

[237]  R. H. Knapp,et al.  A PSYCHOLOGY OF RUMOR , 1944 .

[238]  Qiang Chen,et al.  Exploiting Explicit and Implicit Feedback for Personalized Ranking , 2016 .

[239]  Iadh Ounis,et al.  Incorporating term dependency in the dfr framework , 2007, SIGIR.

[240]  Bowen Zhou,et al.  Applying deep learning to answer selection: A study and an open task , 2015, 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU).

[241]  Nick Craswell,et al.  Query Expansion with Locally-Trained Word Embeddings , 2016, ACL.

[242]  Ye Zhang,et al.  A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural Networks for Sentence Classification , 2015, IJCNLP.

[243]  Xueqi Cheng,et al.  DeepRank: A New Deep Architecture for Relevance Ranking in Information Retrieval , 2017, CIKM.

[244]  Meeyoung Cha,et al.  Modeling Bursty Temporal Pattern of Rumors , 2014, ICWSM.

[245]  Gerard de Melo,et al.  A Position-Aware Deep Model for Relevance Matching in Information Retrieval , 2017, ArXiv.

[246]  Larry P. Heck,et al.  Learning deep structured semantic models for web search using clickthrough data , 2013, CIKM.

[247]  Mu-Hsuan Huang,et al.  The influence of document presentation order and number of documents judged on users' judgments of relevance , 2004, J. Assoc. Inf. Sci. Technol..

[248]  Yonghui Wu,et al.  Exploring the Limits of Language Modeling , 2016, ArXiv.

[249]  Hoang Long Nguyen,et al.  Privacy-Aware Framework for Matching Online Social Identities in Multiple Social Networking Services , 2015, Cybern. Syst..

[250]  Claire Cardie,et al.  Annotating Expressions of Opinions and Emotions in Language , 2005, Lang. Resour. Evaluation.

[251]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[252]  Jeffrey Pomerantz,et al.  Evaluating and predicting answer quality in community QA , 2010, SIGIR.

[253]  Haoyu Zhang,et al.  LSTM-based Deep Learning Models for Answer Ranking , 2016, 2016 IEEE First International Conference on Data Science in Cyberspace (DSC).

[254]  Richard Sproat,et al.  Lattice-Based Search for Spoken Utterance Retrieval , 2004, NAACL.

[255]  W. Bruce Croft,et al.  Learning concept importance using a weighted dependence model , 2010, WSDM '10.

[256]  Noriko Kando,et al.  Using graded-relevance metrics for evaluating community QA answer selection , 2011, WSDM '11.

[257]  W. Redmond,et al.  Accounting for Stability of Retrieval Algorithms using Risk-Reward Curves , 2009 .

[258]  James Allan,et al.  When will information retrieval be "good enough"? , 2005, SIGIR '05.

[259]  Jianqiang Wang,et al.  Matching Meaning for Cross-Language Information Retrieval , 2012, Inf. Process. Manag..

[260]  Jun Zhou,et al.  Cross-Domain Review Helpfulness Prediction Based on Convolutional Neural Networks with Auxiliary Domain Discriminators , 2018, NAACL.

[261]  Timothy W. Finin,et al.  Delta TFIDF: An Improved Feature Space for Sentiment Analysis , 2009, ICWSM.

[262]  Holger Schwenk,et al.  Supervised Learning of Universal Sentence Representations from Natural Language Inference Data , 2017, EMNLP.

[263]  Alton Yeow-Kuan Chua,et al.  A predictive framework for retrieving the best answer , 2008, SAC '08.

[264]  Ari Pirkola,et al.  The effects of query structure and dictionary setups in dictionary-based cross-language information retrieval , 1998, SIGIR '98.

[265]  Eduard H. Hovy,et al.  End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF , 2016, ACL.

[266]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[267]  Xueqi Cheng,et al.  A Deep Architecture for Semantic Matching with Multiple Positional Sentence Representations , 2015, AAAI.

[268]  Stephen E. Robertson,et al.  Okapi at TREC-7: Automatic Ad Hoc, Filtering, VLC and Interactive , 1998, TREC.

[269]  Yang Deng,et al.  Knowledge-aware Attentive Neural Network for Ranking Question Answer Pairs , 2018, SIGIR.

[270]  Youngjoong Ko,et al.  Combining lexical and statistical translation evidence for cross‐language information retrieval , 2015, J. Assoc. Inf. Sci. Technol..

[271]  Oren Kurland,et al.  Query Expansion Using Word Embeddings , 2016, CIKM.

[272]  Lin-Shan Lee,et al.  Voice-based information retrieval — how far are we from the text-based information retrieval ? , 2009, 2009 IEEE Workshop on Automatic Speech Recognition & Understanding.

[273]  Jaime G. Carbonell,et al.  Rank learning for factoid question answering with linguistic and semantic constraints , 2010, CIKM.

[274]  Fabio Crestani,et al.  User Model Enrichment for Venue Recommendation , 2016, AIRS.

[275]  Craig MacDonald,et al.  Risk-Sensitive Evaluation and Learning to Rank using Multiple Baselines , 2016, SIGIR.

[276]  Michael Eisenberg,et al.  Order effects: A study of the possible influence of presentation order on user judgments of document relevance , 1988, J. Am. Soc. Inf. Sci..

[277]  Heiko Paulheim,et al.  Detection of Relation Assertion Errors in Knowledge Graphs , 2017, K-CAP.

[278]  W. Bruce Croft,et al.  A Hybrid Embedding Approach to Noisy Answer Passage Retrieval , 2018, ECIR.

[279]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[280]  Sanjeev Khudanpur,et al.  Using proxies for OOV keywords in the keyword search task , 2013, 2013 IEEE Workshop on Automatic Speech Recognition and Understanding.