Semantic Mapping Using Mobile Robots

Robotic mapping is the process of automatically constructing an environment representation using mobile robots. We address the problem of semantic mapping, which consists of using mobile robots to create maps that represent not only metric occupancy but also other properties of the environment. Specifically, we develop techniques to build maps that represent activity and navigability of the environment. Our approach to semantic mapping is to combine machine learning techniques with standard mapping algorithms. Supervised learning methods are used to automatically associate properties of space to the desired classification patterns. We present two methods, the first based on hidden Markov models and the second on support vector machines. Both approaches have been tested and experimentally validated in two problem domains: terrain mapping and activity-based mapping.

[1]  Gaurav S. Sukhatme,et al.  Mobile Robot Simultaneous Localization and Mapping in Dynamic Environments , 2005, Auton. Robots.

[2]  James M. Rehg,et al.  Traversability classification using unsupervised on-line visual learning for outdoor robot navigation , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[3]  Cipriano Galindo,et al.  Multi-hierarchical semantic maps for mobile robotics , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Dieter Fox,et al.  Relational Object Maps for Mobile Robots , 2005, IJCAI.

[5]  Wolfram Burgard,et al.  Mobile Robot Mapping and Localization in Non-Static Environments , 2005, AAAI.

[6]  Mark D. Dunlop,et al.  Image retrieval by hypertext links , 1997, SIGIR '97.

[7]  Aaron C. Courville,et al.  Interacting Markov Random Fields for Simultaneous Terrain Modeling and Obstacle Detection , 2005, Robotics: Science and Systems.

[8]  Robert C. Bolles,et al.  Outdoor Mapping and Navigation Using Stereo Vision , 2006, ISER.

[9]  Koby Crammer,et al.  On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines , 2002, J. Mach. Learn. Res..

[10]  Alex Pentland,et al.  Coupled hidden Markov models for complex action recognition , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[12]  Wei Niu,et al.  Human activity detection and recognition for video surveillance , 2004, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763).

[13]  Hai Zhuge,et al.  Retrieve images by understanding semantic links and clustering image fragments , 2004, J. Syst. Softw..

[14]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[15]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[16]  Frank Dellaert,et al.  Semantic SLAM for Collaborative Cognitive Workspaces , 2004, AAAI Technical Report.

[17]  Sebastian Thrun,et al.  Learning Activity-Based Ground Models from a Moving Helicopter Platform , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[18]  R. Siegwart,et al.  Towards a Cognitive Probabilistic Representation of Space for Mobile Robots , 2006, 2006 IEEE International Conference on Information Acquisition.

[19]  Gaurav S. Sukhatme,et al.  Towards geometric 3D mapping of outdoor environments using mobile robots , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[21]  Frank Wolter,et al.  Exploring Artificial Intelligence in the New Millenium , 2002 .

[22]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[23]  Wolfram Burgard,et al.  Supervised Learning of Places from Range Data using AdaBoost , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[24]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[25]  Michael A. Goodrich,et al.  Snapshots for semantic maps , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[26]  Sebastian Thrun,et al.  Learning Hierarchical Object Maps of Non-Stationary Environments with Mobile Robots , 2002, UAI.

[27]  V. Vapnik Estimation of Dependences Based on Empirical Data , 2006 .

[28]  Viii Supervisor Sonar-Based Real-World Mapping and Navigation , 2001 .

[29]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[30]  Wolfram Burgard,et al.  Autonomous Terrain Mapping and Classification Using Hidden Markov Models , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[31]  Jr. G. Forney,et al.  Viterbi Algorithm , 1973, Encyclopedia of Machine Learning.

[32]  Gaurav S. Sukhatme,et al.  Most valuable player: a robot device server for distributed control , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[33]  J. Laurie Snell,et al.  Markov Random Fields and Their Applications , 1980 .

[34]  Wolfram Burgard,et al.  Semantic Place Classification of Indoor Environments with Mobile Robots Using Boosting , 2005, AAAI.

[35]  Joachim Hertzberg,et al.  3D Mapping with Semantic Knowledge , 2005, RoboCup.

[36]  Sebastian Thrun,et al.  Robotic mapping: a survey , 2003 .

[37]  Naphtali Rishe Efficient Organization of Semantic Databases , 1989, FODO.

[38]  Takeo Kanade,et al.  Semantic-based Biomedical Image Indexing and Retrieval , 2003 .

[39]  Derik Schröter Region & gateway mapping: acquiring structured and object-oriented representations of indoor environments , 2006 .

[40]  V. Vapnik Estimation of Dependences Based on Empirical Data , 2006 .

[41]  Benjamin Kuipers,et al.  Bootstrap learning for object discovery , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[42]  A Min Tjoa,et al.  The Semantic Desktop: A Semantic Personal Information Management System Based on RDF and Topic Maps , 2005, ODBIS.

[43]  Cang Ye,et al.  A new terrain mapping method for mobile robots obstacle negotiation , 2003, SPIE Defense + Commercial Sensing.