Partial orthogonal rank-one decomposition of complex symmetric tensors based on the Takagi factorization
暂无分享,去创建一个
[1] W. Gragg,et al. Singular value decompositions of complex symmetric matrices , 1988 .
[2] Pierre Comon,et al. Independent component analysis, A new concept? , 1994, Signal Process..
[3] Wei Xu,et al. Block Lanczos tridiagonalization of complex symmetric matrices , 2005, SPIE Optics + Photonics.
[4] Sabine Van Huffel,et al. Exponential data fitting using multilinear algebra: the single‐channel and multi‐channel case , 2005, Numer. Linear Algebra Appl..
[5] Tamara G. Kolda,et al. Orthogonal Tensor Decompositions , 2000, SIAM J. Matrix Anal. Appl..
[6] Jean-Franois Cardoso. High-Order Contrasts for Independent Component Analysis , 1999, Neural Computation.
[7] Raf Vandebril,et al. A comparison between the complex symmetric based and classical computation of the singular value decomposition of normal matrices , 2014, Numerical Algorithms.
[8] C. L. Nikias,et al. Signal processing with higher-order spectra , 1993, IEEE Signal Processing Magazine.
[9] Sabine Van Huffel,et al. Enhanced resolution based on minimum variance estimation and exponential data modeling , 1993, Signal Process..
[10] Andrzej Cichocki,et al. Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.
[11] Wei Xu,et al. A Divide-and-Conquer Method for the Takagi Factorization , 2008, SIAM J. Matrix Anal. Appl..
[12] Pierre Comon,et al. Tensor Decompositions, State of the Art and Applications , 2002 .
[13] L. De Lathauwer,et al. Line Search Computation of the Block Factor Model for Blind Multi-User Access in Wireless Communications , 2006, 2006 IEEE 7th Workshop on Signal Processing Advances in Wireless Communications.
[14] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[15] Tamara G. Kolda,et al. A Counterexample to the Possibility of an Extension of the Eckart-Young Low-Rank Approximation Theorem for the Orthogonal Rank Tensor Decomposition , 2002, SIAM J. Matrix Anal. Appl..
[16] Ngai Wong,et al. A Constructive Algorithm for Decomposing a Tensor into a Finite Sum of Orthonormal Rank-1 Terms , 2014, SIAM J. Matrix Anal. Appl..
[17] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[18] P. Comon,et al. Symmetric tensor decomposition , 2009, 2009 17th European Signal Processing Conference.
[19] Yimin Wei,et al. Complex-valued neural networks for the Takagi vector of complex symmetric matrices , 2017, Neurocomputing.
[20] Lieven De Lathauwer,et al. On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part II: Uniqueness of the Overall Decomposition , 2013, SIAM J. Matrix Anal. Appl..
[21] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[22] Wei Xu,et al. A twisted factorization method for symmetric SVD of a complex symmetric tridiagonal matrix , 2009, Numer. Linear Algebra Appl..
[23] Jan Swevers,et al. Identification of nonlinear systems using Polynomial Nonlinear State Space models , 2010, Autom..
[24] Ngai Wong,et al. Symmetric tensor decomposition by an iterative eigendecomposition algorithm , 2014, J. Comput. Appl. Math..
[25] Gene H. Golub,et al. Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..
[26] Lieven De Lathauwer,et al. A Block Factor Analysis Based Receiver for Blind Multi-User Access in Wireless Communications , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.
[27] Raf Vandebril,et al. On Generic Nonexistence of the Schmidt-Eckart-Young Decomposition for Complex Tensors , 2014, SIAM J. Matrix Anal. Appl..
[28] Liqun Qi,et al. New ALS Methods With Extrapolating Search Directions and Optimal Step Size for Complex-Valued Tensor Decompositions , 2011, IEEE Transactions on Signal Processing.