On the use of input-output feedback linearization techniques for the control of nonminimum-phase systems

The objective of the thesis is to study the possibility of using input-output feedback linearization techniques for controlling nonlinear nonminimum-phase systems. Two methods are developed. The first one is based on an approximate input-output feedback linearization, where a part of the internal dynamics is neglected, while the second method focuses on the stabilization of the internal dynamics. The inverse of a nonminimum-phase system being unstable, standard input-output feedback linearization is not effective to control such systems. In this work, a control scheme is developed, based on an approximate input-output feedback linearization method, where the observability normal form is used in conjunction with input-output feedback linearization. The system is feedback linearized upon neglecting a part of the system dynamics, with the neglected part being considered as a perturbation. Stability analysis is provided based on the vanishing perturbation theory. However, this approximate input-output feedback linearization is only effective for very small values of the perturbation. In the general case, the internal dynamics cannot be crushed and need to be stabilized. On the other hand, predictive control is an effective approach for tackling problems with nonlinear dynamics, especially when analytical computation of the control law is difficult. Therefore, a cascade-control scheme that combines input-output feedback linearization and predictive control is proposed. Therein, inputoutput feedback linearization forms the inner loop that compensates the nonlinearities in the input-output behavior, and predictive control forms the outer loop that is used to stabilize the internal dynamics. With this scheme, predictive control is implemented at a re-optimization rate determined by the internal dynamics rather than the system dynamics, which is particularly advantageous when internal dynamics are slower than the input-output behavior of the controlled system. Exponential stability of the cascade-control scheme is provided using singular perturbation theory. Finally, both the approximate input-output feedback linearization and the cascade-control scheme are implemented successfully, on a polar pendulum 'pendubot' that is available at the Laboratoire d'Automatique of EPFL. The pendubot exhibits all the properties that suit the control methodologies mentioned above. From the approximate input-output feedback linearization point of view, the pendubot is a nonlinear system, not input-state feedback linearizable. Also, the pendubot is nonminimum phase, which prevents the use of standard input-output feedback linearization. From the cascade control point of view, although the pendubot has fast dynamics, the input-output feedback linearization separates the input-output system behavior from the internal dynamics, thus leading to a two-time-scale systems: fast input-output behavior, which is controlled using a linear controller, and slow reduced internal dynamics, which are stabilized using model predictive control. Therefore, the cascade-control scheme is effective, and model predictive control can be implemented at a low frequency compared to the input-output behavior.

[1]  S. Bortoff Approximate state-feedback linearization using spline functions , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[2]  William H. Press,et al.  Numerical recipes , 1990 .

[3]  J. Hauser,et al.  Approximate feedback linearization: least squares approximate integrating factors , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[4]  M. W. Spong,et al.  Pseudolinearization of the acrobot using spline functions , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[5]  Frank Allgöwer,et al.  An engineering perspective on nonlinear H∞-control , 1994 .

[6]  V. Wertz,et al.  Adaptive Optimal Control: The Thinking Man's G.P.C. , 1991 .

[7]  Edoardo Mosca,et al.  Stable redesign of predictive control , 1992, Autom..

[8]  H. Nijmeijer,et al.  On the design of approximate non-linear parametric controllers , 2000 .

[9]  J. Hauser Nonlinear control via uniform system approximation , 1991 .

[10]  T. Boom,et al.  Robust nonlinear predictive control using feedback linearization and linear matrix inequalities , 1997 .

[11]  W. Baumann,et al.  Feedback control of nonlinear systems by extended linearization , 1986 .

[12]  Rogelio Lozano,et al.  Energy based control of the Pendubot , 2000, IEEE Trans. Autom. Control..

[13]  D. E. Davidson,et al.  Enlarge your region of attraction using high-gain feedback , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[14]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[15]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[16]  J. Hauser,et al.  Approximate feedback linearization: an L/sub 2/ numerical approach , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[17]  K. Guemghar,et al.  Predictive control of fast unstable and nonminimum-phase nonlinear systems , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[18]  R. Su On the linear equivalents of nonlinear systems , 1982 .

[19]  Mingjun Zhang,et al.  Hybrid control of the Pendubot , 2002 .

[20]  Arthur Krener,et al.  Higher order linear approximations to nonlinear control systems , 1987, 26th IEEE Conference on Decision and Control.

[21]  Michael J. Kurtz,et al.  Input-output linearizing control of constrained nonlinear processes , 1997 .

[22]  Duncan A. Mellichamp A predictive time-optimal controller for second-order systems with time delay , 1970 .

[23]  Alberto Bemporad,et al.  Robust model predictive control: A survey , 1998, Robustness in Identification and Control.

[24]  W. Rugh,et al.  On the pseudo-linearization problem for nonlinear systems , 1989 .

[25]  Ouassima Akhrif,et al.  Nonlinear control of non-minimum phase systems: application to the voltage and speed regulation of power systems , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).

[26]  N. L. Ricker,et al.  Adaptive optimal control: The thinking man's GPC : R. R. Bitmead, M. Gevers and V. Wertz , 1993, Autom..

[27]  W. Rugh Linear System Theory , 1992 .

[28]  B. Srinivasan,et al.  CONTROL OF PENDUBOT USING INPUT-OUTPUT FEEDBACK LINEARIZATION AND PREDICTIVE CONTROL , 2005 .

[29]  K.J. Astrom,et al.  The Mechatronics Control Kit for education and research , 2001, Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204).

[30]  B. Paden,et al.  Stable inversion of nonlinear non-minimum phase systems , 1996 .

[31]  Sergio M. Savaresi,et al.  Approximate linearization via feedback - an overview , 2001, Autom..

[32]  Didier Dumur,et al.  A new control strategy for induction motor based on non-linear predictive control and feedback linearization , 2000 .

[33]  Sergio M. Savaresi,et al.  Virtual reference direct design method: an off-line approach to data-based control system design , 2000, IEEE Trans. Autom. Control..

[34]  John R. Hauser,et al.  Approximate Feedback Linearization: A Homotopy Operator Approach , 1996 .

[35]  Douglas A. Lawrence A general approach to input-output pseudolinearization for nonlinear systems , 1998, IEEE Trans. Autom. Control..

[36]  Jianliang Wang,et al.  Parameterized linear systems and linearization families for nonlinear systems , 1987 .

[37]  I. Rusnak Control for unstable nonminimum phase uncertain dynamic vehicle , 1996 .

[38]  S. Won,et al.  A local stabilizing control scheme using an approximate feedback linearization , 1994, IEEE Trans. Autom. Control..

[39]  W. Rugh,et al.  Feedback linearization families for nonlinear systems , 1987 .

[40]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[41]  Dominique Bonvin,et al.  A GLOBAL STABILIZATION STRATEGY FOR AN INVERTED PENDULUM , 2002 .

[42]  R. Fletcher Practical Methods of Optimization , 1988 .

[43]  M. Morari,et al.  Robust Stability of Constrained Model Predictive Control , 1993, 1993 American Control Conference.

[44]  Chun-Yi Su,et al.  A new fuzzy approach for swing up control of Pendubot , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[45]  James B. Rawlings,et al.  Nonlinear Model Predictive Control: A Tutorial and Survey , 1994 .

[46]  Frank Allgöwer,et al.  Nonlinear Model Predictive Control , 2007 .

[47]  Masoud Soroush,et al.  Nonlinear feedback control of multivariable non-minimum-phase processes , 2002 .

[48]  C. Kravaris,et al.  Nonlinear state feedback control of second-order nonminimum-phase nonlinear systems , 1990 .

[49]  Jie Yu,et al.  Unconstrained receding-horizon control of nonlinear systems , 2001, IEEE Trans. Autom. Control..

[50]  Riccardo Scattolini,et al.  Constrained receding-horizon predictive control , 1991 .

[51]  Prodromos Daoutidis,et al.  OUTPUT FEEDBACK CONTROL OF NONMINIMUM-PHASE NONLINEAR PROCESSES , 1994 .

[52]  J. Miller Numerical Analysis , 1966, Nature.

[53]  F. Allgöwer,et al.  Nonlinear Model Predictive Control: From Theory to Application , 2004 .

[54]  Prodromos Daoutidis,et al.  Output Feedback Controller Realizations for Open-loop Stable Nonlinear Processes , 1992, 1992 American Control Conference.

[55]  M. Soroush,et al.  Model-based control of unstable, non-minimum-phase, nonlinear processes , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[56]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[57]  H. S. Black,et al.  Stabilized feedback amplifiers , 1934 .

[58]  Costas Kravaris,et al.  Nonlinear model-state feedback control for nonminimum-phase processes , 2003, Autom..

[59]  P. S. Shcherbakov Alexander mikhailovitch lyapunov: On the centenary of his doctoral dissertation on stability of motion , 1992, Autom..

[60]  Dong Li Output Tracking of Nonlinear Nonminimum Phase Systems: an Engineering Solution , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[61]  C. Champetier,et al.  Pseudolinearization of nonlinear systems by dynamic precompensation , 1985, 1985 24th IEEE Conference on Decision and Control.

[62]  James B. Rawlings,et al.  Tutorial: model predictive control technology , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[63]  J. Rawlings,et al.  The stability of constrained receding horizon control , 1993, IEEE Trans. Autom. Control..

[64]  K. Yuan,et al.  Output tracking of a non-linear non-minimum phase PVTOL aircraft based on non-linear state feedback control , 2002 .

[65]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[66]  E. Ronco,et al.  Predictive control with added feedback for fast nonlinear systems , 2001, 2001 European Control Conference (ECC).

[67]  Wei Kang Approximate linearization of nonlinear control systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[68]  John Y. Hung,et al.  Variable structure control: a survey , 1993, IEEE Trans. Ind. Electron..

[69]  Mark W. Spong,et al.  The swing up control problem for the Acrobot , 1995 .

[70]  Masoud Soroush,et al.  A Continuous-Time Formulation of Nonlinear Model Predictive Control , 1992, 1992 American Control Conference.

[71]  Sun Hao,et al.  Predictive Control of Nonlinear Systems based on Extended Linearization , 1990, 1990 American Control Conference.

[72]  Stanley M. Shinners Advanced Modern Control System Theory and Design , 1998 .

[73]  L. Hunt,et al.  Global transformations of nonlinear systems , 1983 .

[74]  Wilson Rugh Design of nonlinear compensators for nonlinear systems by an extended linearization technique , 1984, The 23rd IEEE Conference on Decision and Control.

[75]  A. Krener,et al.  Approximate normal forms of nonlinear systems , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[76]  M. Morari,et al.  A normal form approach to approximate input-output linearization for maximum phase nonlinear SISO systems , 1996, IEEE Trans. Autom. Control..

[77]  M. A. McClure,et al.  Applying variations of the quantitative feedback technique (QFT) to unstable, non-minimum phase aircraft dynamics models , 1992, Proceedings of the IEEE 1992 National Aerospace and Electronics Conference@m_NAECON 1992.

[78]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[79]  S. Bittanti,et al.  Approximate Linearization of a Nonlinear Plant: The Case of a Synchronous Generator Working in Underexcitation Condition , 1996 .

[80]  A. Isidori Nonlinear Control Systems , 1985 .

[81]  A. Krener Approximate linearization by state feedback and coordinate change , 1984 .

[82]  K S Narendra,et al.  Control of nonlinear dynamical systems using neural networks. II. Observability, identification, and control , 1996, IEEE Trans. Neural Networks.

[83]  Jie Yu,et al.  Comparison of nonlinear control design techniques on a model of the Caltech ducted fan , 2001, at - Automatisierungstechnik.

[84]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[85]  Masoud Soroush,et al.  Continuous-Time, Nonlinear Feedback Control of Stable Processes , 2001 .

[86]  C. Reboulet,et al.  "Pseudolinearization of multi-input nonlinear systems" , 1984, The 23rd IEEE Conference on Decision and Control.

[87]  A. Jadbabaie,et al.  Stabilizing receding horizon control of nonlinear systems: a control Lyapunov function approach , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[88]  J. Hauser,et al.  Least squares approximate feedback linearization: a variational approach , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[89]  Snehasis Mukhopadhyay,et al.  Adaptive control using neural networks and approximate models , 1997, IEEE Trans. Neural Networks.

[90]  Fu-Chuang Chen,et al.  Adaptive control of nonlinear systems using neural networks , 1992 .

[91]  Salvatore Monaco,et al.  Quadratic forms and approximate feed back linearization in discrete time , 1997 .

[92]  Yoshiaki Ichikawa,et al.  Neural network application for direct feedback controllers , 1992, IEEE Trans. Neural Networks.

[93]  Approximate and local linearizability of non-linear discrete-time systems , 1986 .

[94]  Kyun K. Lee,et al.  Some numerical aspects of approximate linearization of single input non-linear systems , 1993 .

[95]  Jean-Pierre Barbot,et al.  Discrete-time approximated linearization of SISO systems under output feedback , 1999, IEEE Trans. Autom. Control..

[96]  Roberto Zanasi,et al.  Discrete Variable Structure Integral Controllers , 1996 .

[97]  C. Reboulet,et al.  A new method for linearizing non-linear systems : the pseudolinearization† , 1984 .

[98]  Ai-Ping Hu,et al.  Nonlinear non-minimum phase output tracking via output re-definition and learning control , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[99]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[100]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[101]  Dominique Bonvin,et al.  Approximate input-output linearization of nonlinear systems using the observability normal form , 2003, 2003 European Control Conference (ECC).

[102]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[103]  A. Krener On the Equivalence of Control Systems and the Linearization of Nonlinear Systems , 1973 .

[104]  Evanghelos Zafiriou,et al.  Robust Model Predictive Control of Processes with Hard Constraints. , 1990 .

[105]  Kou Yamada,et al.  A Nonlinear Control Design for the Pendubot , 2003, Modelling, Identification and Control.

[106]  Dan Hahs,et al.  Dynamic Vehicle Control (Problem) , 1991, 1991 American Control Conference.

[107]  Anthony M. Bloch,et al.  Nonlinear Dynamical Control Systems (H. Nijmeijer and A. J. van der Schaft) , 1991, SIAM Review.

[108]  Frank Allgöwer,et al.  Approximate input-output linearization of nonminimum phase nonlinear systems , 1997 .

[109]  W. Rugh An extended linearization approach to nonlinear system inversion , 1986 .

[110]  Douglas A. Lawrence Approximate model matching for nonlinear systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[111]  Eduardo F. Camacho,et al.  Introduction to Model Based Predictive Control , 1999 .