Towards the Quantitative Evaluation of Visual Attention Models Bottom−up Top-down Dynamic Static 0 0 0

Scores of visual attention models have been developed over the past several decades of research. Differences in implementation, assumptions, and evaluations have made comparison of these models very difficult. Taxonomies have been constructed in an attempt at the organization and classification of models, but are not sufficient at quantifying which classes of models are most capable of explaining available data. At the same time, a multitude of physiological and behavioral findings have been published, measuring various aspects of human and non-human primate visual attention. All of these elements highlight the need to integrate the computational models with the data by (1) operationalizing the definitions of visual attention tasks and (2) designing benchmark datasets to measure success on specific tasks, under these definitions. In this paper, we provide some examples of operationalizing and benchmarking different visual attention tasks, along with the relevant design considerations.

[1]  L. Zhaoping Attention capture by eye of origin singletons even without awareness--a hallmark of a bottom-up saliency map in the primary visual cortex. , 2008, Journal of vision.

[2]  Ali Borji,et al.  Analysis of Scores, Datasets, and Models in Visual Saliency Prediction , 2013, 2013 IEEE International Conference on Computer Vision.

[3]  John K. Tsotsos,et al.  Overt fixations reflect a natural central bias , 2013 .

[4]  Fred Henrik Hamker,et al.  The emergence of attention by population-based inference and its role in distributed processing and cognitive control of vision , 2005, Comput. Vis. Image Underst..

[5]  R. H. Phaf,et al.  SLAM: A connectionist model for attention in visual selection tasks , 1990, Cognitive Psychology.

[6]  Dana H. Ballard,et al.  Animate Vision , 1991, Artif. Intell..

[7]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  Tilke Judd,et al.  Understanding and predicting where people look in images , 2011 .

[9]  J. Deutsch,et al.  Attention: Some theoretical considerations. , 1963 .

[10]  Andrzej Cichocki,et al.  A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.

[11]  Neil A. Macmillan,et al.  Detection Theory: A User's Guide , 1991 .

[12]  Mazyar Fallah,et al.  Stimulus-specific competitive selection in macaque extrastriate visual area V4 , 2007, Proceedings of the National Academy of Sciences.

[13]  Rajesh P. N. Rao,et al.  Eye movements in iconic visual search , 2002, Vision Research.

[14]  Alan C. Bovik,et al.  GAFFE: A Gaze-Attentive Fixation Finding Engine , 2008, IEEE Transactions on Image Processing.

[15]  Takahiro Okabe,et al.  Can Saliency Map Models Predict Human Egocentric Visual Attention? , 2010, ACCV Workshops.

[16]  Benjamin W Tatler,et al.  The central fixation bias in scene viewing: selecting an optimal viewing position independently of motor biases and image feature distributions. , 2007, Journal of vision.

[17]  C. Koch,et al.  An oscillation-based model for the neuronal basis of attention , 1993, Vision Research.

[18]  Jude F. Mitchell,et al.  Attention Influences Single Unit and Local Field Potential Response Latencies in Visual Cortical Area V4 , 2012, The Journal of Neuroscience.

[19]  GuyaderNathalie,et al.  Modelling Spatio-Temporal Saliency to Predict Gaze Direction for Short Videos , 2009 .

[20]  Leslie G. Ungerleider,et al.  Mechanisms of visual attention in the human cortex. , 2000, Annual review of neuroscience.

[21]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[22]  Brian Scassellati,et al.  A Behavioral Analysis of Computational Models of Visual Attention , 2007, International Journal of Computer Vision.

[23]  D. V. van Essen,et al.  A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  T. Poggio,et al.  What and where: A Bayesian inference theory of attention , 2010, Vision Research.

[25]  C. Koch,et al.  A saliency-based search mechanism for overt and covert shifts of visual attention , 2000, Vision Research.

[26]  Javier R. Movellan,et al.  Optimal scanning for faster object detection , 2009, CVPR.

[27]  HongJiang Zhang,et al.  Contrast-based image attention analysis by using fuzzy growing , 2003, MULTIMEDIA '03.

[28]  T. Sejnowski,et al.  A selection model for motion processing in area MT of primates , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  Albert Ali Salah,et al.  A Selective Attention-Based Method for Visual Pattern Recognition with Application to Handwritten Digit Recognition and Face Recognition , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  M. Corbetta,et al.  The Reorienting System of the Human Brain: From Environment to Theory of Mind , 2008, Neuron.

[31]  P. McOwan,et al.  Generating customised experimental stimuli for visual search using Genetic Algorithms shows evidence for a continuum of search efficiency , 2009, Vision Research.

[32]  John K. Tsotsos,et al.  On Sensor Bias in Experimental Methods for Comparing Interest-Point, Saliency, and Recognition Algorithms , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  H. J. Muller,et al.  SEarch via Recursive Rejection (SERR): A Connectionist Model of Visual Search , 1993, Cognitive Psychology.

[34]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[35]  P. G. Vos,et al.  Configurational effects on the enumeration of dots: Counting by groups , 1982, Memory & cognition.

[36]  S. Grossberg A psychophysiological theory of reinforcement, drive, motivation, and attention , 1987 .

[37]  C. Eriksen,et al.  Visual attention within and around the field of focal attention: A zoom lens model , 1986, Perception & psychophysics.

[38]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[39]  Sabine Süsstrunk,et al.  Salient Region Detection and Segmentation , 2008, ICVS.

[40]  J. P. Thomas,et al.  A signal detection model predicts the effects of set size on visual search accuracy for feature, conjunction, triple conjunction, and disjunction displays , 2000, Perception & psychophysics.

[41]  M. Posner,et al.  The attention system of the human brain: 20 years after. , 2012, Annual review of neuroscience.

[42]  Xiao-Jing Wang,et al.  Reconciling Coherent Oscillation with Modulationof Irregular Spiking Activity in Selective Attention:Gamma-Range Synchronization between Sensoryand Executive Cortical Areas , 2010, The Journal of Neuroscience.

[43]  Kunihiko Fukushima,et al.  A neural network model for selective attention in visual pattern recognition , 1986, Biological Cybernetics.

[44]  Pierre Baldi,et al.  Bayesian surprise attracts human attention , 2005, Vision Research.

[45]  Liqing Zhang,et al.  Saliency Detection: A Spectral Residual Approach , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[46]  Michael Lindenbaum,et al.  Esaliency (Extended Saliency): Meaningful Attention Using Stochastic Image Modeling , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Harvey M. Wagner,et al.  Global Sensitivity Analysis , 1995, Oper. Res..

[48]  P. Verghese Visual Search and Attention A Signal Detection Theory Approach , 2001, Neuron.

[49]  Bärbel Mertsching,et al.  Data- and Model-Driven Gaze Control for an Active-Vision System , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Hans P. Moravec Rover Visual Obstacle Avoidance , 1981, IJCAI.

[51]  Earl K Miller,et al.  Cortical circuits for the control of attention , 2012, Current Opinion in Neurobiology.

[52]  Gustavo Deco,et al.  A Neurodynamical Model of Visual Attention: Feedback Enhancement of Spatial Resolution in a Hierarchical System , 2001, Journal of Computational Neuroscience.

[53]  D. Broadbent Perception and communication , 1958 .

[54]  Krista A. Ehinger,et al.  Rethinking the Role of Top-Down Attention in Vision: Effects Attributable to a Lossy Representation in Peripheral Vision , 2011, Front. Psychology.

[55]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[56]  Bernhard Schölkopf,et al.  Center-surround patterns emerge as optimal predictors for human saccade targets. , 2009, Journal of vision.

[57]  Matthew H Tong,et al.  of the Annual Meeting of the Cognitive Science Society Title SUNDAy : Saliency Using Natural Statistics for Dynamic Analysis of Scenes Permalink , 2009 .

[58]  A. Treisman How the deployment of attention determines what we see , 2006, Visual cognition.

[59]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[60]  Lie Lu,et al.  A generic framework of user attention model and its application in video summarization , 2005, IEEE Trans. Multim..

[61]  Nuno Vasconcelos,et al.  Saliency-based discriminant tracking , 2009, CVPR.

[62]  Antonio Torralba,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 80 Million Tiny Images: a Large Dataset for Non-parametric Object and Scene Recognition , 2022 .

[63]  Nicholas C. Foley,et al.  Neural Dynamics of Object-based Multifocal Visual Spatial Attention and Priming: Object Cueing, Useful-field-of-view, and Crowding Cognitive Psychology , 2012 .

[64]  Wen Gao,et al.  Probabilistic Multi-Task Learning for Visual Saliency Estimation in Video , 2010, International Journal of Computer Vision.

[65]  Krista A. Ehinger,et al.  SUN database: Large-scale scene recognition from abbey to zoo , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[66]  Tim K Marks,et al.  SUN: A Bayesian framework for saliency using natural statistics. , 2008, Journal of vision.

[67]  John K. Tsotsos On the relative complexity of active vs. passive visual search , 2004, International Journal of Computer Vision.

[68]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[69]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[70]  Rodrigo F. Salazar,et al.  Content-Specific Fronto-Parietal Synchronization During Visual Working Memory , 2012, Science.

[71]  U. Neisser VISUAL SEARCH. , 1964, Scientific American.

[72]  Antonio Torralba,et al.  Modeling global scene factors in attention. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[73]  Gert Kootstra,et al.  Paying Attention to Symmetry , 2008, BMVC.

[74]  Claudio M. Privitera,et al.  Algorithms for Defining Visual Regions-of-Interest: Comparison with Eye Fixations , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[75]  Krista A. Ehinger,et al.  Modelling search for people in 900 scenes: A combined source model of eye guidance , 2009 .

[76]  John H. R. Maunsell,et al.  Feature-based attention in visual cortex , 2006, Trends in Neurosciences.

[77]  Gustavo Deco,et al.  A neurodynamical model for selective visual attention using oscillators , 2001, Neural Networks.

[78]  Junji Yamato,et al.  Real-time estimation of human visual attention with dynamic Bayesian network and MCMC-based particle filter , 2009, 2009 IEEE International Conference on Multimedia and Expo.

[79]  Shuangzhe Liu,et al.  Global Sensitivity Analysis: The Primer by Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Debora Gatelli, Michaela Saisana, Stefano Tarantola , 2008 .

[80]  Ronald A. Rensink The Dynamic Representation of Scenes , 2000 .

[81]  Giuseppe Boccignone,et al.  Modelling gaze shift as a constrained random walk , 2004 .

[82]  Guanghui Wang,et al.  Introduction to 3D Computer Vision , 2011 .

[83]  Tirin Moore,et al.  Changes in Visual Receptive Fields with Microstimulation of Frontal Cortex , 2006, Neuron.

[84]  Antonio Torralba,et al.  Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. , 2006, Psychological review.

[85]  John K. Tsotsos,et al.  A framework for visual motion understanding , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[86]  Subutai Ahmad,et al.  VISIT: A Neural Model of Covert Visual Attention , 1991, NIPS.

[87]  Rongrong Ji,et al.  Visual saliency as sequential eye fixation probability , 2010, 2010 IEEE International Conference on Image Processing.

[88]  Kunio Kashino,et al.  A stochastic model of selective visual attention with a dynamic Bayesian network , 2008, 2008 IEEE International Conference on Multimedia and Expo.

[89]  Yin Li,et al.  Visual Saliency Based on Conditional Entropy , 2009, ACCV.

[90]  Paul L. Rosin A simple method for detecting salient regions , 2009, Pattern Recognit..

[91]  Jianxiong Xiao,et al.  What makes an image memorable , 2011 .

[92]  Andrew McCallum,et al.  Reinforcement learning with selective perception and hidden state , 1996 .

[93]  Christof Koch,et al.  Attentional Selection for Object Recognition - A Gentle Way , 2002, Biologically Motivated Computer Vision.

[94]  Lucas Paletta,et al.  Q-learning of sequential attention for visual object recognition from informative local descriptors , 2005, ICML.

[95]  Mubarak Shah,et al.  Visual attention detection in video sequences using spatiotemporal cues , 2006, MM '06.

[96]  O. Meur,et al.  Predicting visual fixations on video based on low-level visual features , 2007, Vision Research.

[97]  Shenmin Zhang,et al.  What do saliency models predict? , 2014, Journal of vision.

[98]  Liqing Zhang,et al.  Dynamic visual attention: searching for coding length increments , 2008, NIPS.

[99]  P. Tiesinga,et al.  Role of interneuron diversity in the cortical microcircuit for attention. , 2008, Journal of neurophysiology.

[100]  Liming Zhang,et al.  A Novel Multiresolution Spatiotemporal Saliency Detection Model and Its Applications in Image and Video Compression , 2010, IEEE Transactions on Image Processing.

[101]  Naila Murray,et al.  Saliency estimation using a non-parametric low-level vision model , 2011, CVPR 2011.

[102]  D. Heeger,et al.  The Normalization Model of Attention , 2009, Neuron.

[103]  Dana H. Ballard,et al.  Eye Movements for Reward Maximization , 2003, NIPS.

[104]  Nanning Zheng,et al.  Learning to Detect a Salient Object , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[105]  Laurent Itti,et al.  Beyond bottom-up: Incorporating task-dependent influences into a computational model of spatial attention , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[106]  A. Treisman THE EFFECT OF IRRELEVANT MATERIAL ON THE EFFICIENCY OF SELECTIVE LISTENING. , 1964, The American journal of psychology.

[107]  Minho Lee,et al.  Dynamic visual selective attention model , 2008, Neurocomputing.

[108]  Joonyeol Lee,et al.  A Normalization Model of Attentional Modulation of Single Unit Responses , 2009, PloS one.

[109]  J. Wolfe,et al.  What Can 1 Million Trials Tell Us About Visual Search? , 1998 .

[110]  E. O. Postma,et al.  SCAN: a neural model of covert attention , 1994 .

[111]  Christof Koch,et al.  Modeling attention to salient proto-objects , 2006, Neural Networks.

[112]  Minho Lee,et al.  Stereo saliency map considering affective factors and selective motion analysis in a dynamic environment , 2008, Neural Networks.

[113]  Christof Koch,et al.  Predicting human gaze using low-level saliency combined with face detection , 2007, NIPS.

[114]  Thierry Baccino,et al.  Methods for comparing scanpaths and saliency maps: strengths and weaknesses , 2012, Behavior Research Methods.

[115]  Alexei A. Efros,et al.  Unbiased look at dataset bias , 2011, CVPR 2011.

[116]  Justus H. Piater,et al.  Closed-Loop Learning of Visual Control Policies , 2011, J. Artif. Intell. Res..

[117]  C. Chabris,et al.  Gorillas in Our Midst: Sustained Inattentional Blindness for Dynamic Events , 1999, Perception.

[118]  P. A. Sandon Simulating Visual Attention , 1990, Journal of Cognitive Neuroscience.

[119]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[120]  C. Bundesen A theory of visual attention. , 1990, Psychological review.

[121]  Heinz Hügli,et al.  Empirical Validation of the Saliency-based Model of Visual Attention , 2003 .

[122]  G. Humphreys,et al.  Computational models of visual selective attention: A review , 2005 .

[123]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[124]  John G. Taylor,et al.  A control model of the movement of attention , 2002, Neural Networks.

[125]  Jeremy M. Wolfe,et al.  Guided Search 4.0: Current Progress With a Model of Visual Search , 2007, Integrated Models of Cognitive Systems.

[126]  Liming Zhang,et al.  Spatio-temporal Saliency detection using phase spectrum of quaternion fourier transform , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[127]  Jude F. Mitchell,et al.  Spatial Attention Modulates Center-Surround Interactions in Macaque Visual Area V4 , 2009, Neuron.

[128]  John K. Tsotsos A Computational Perspective on Visual Attention , 2011 .

[129]  L. Itti,et al.  Modeling the influence of task on attention , 2005, Vision Research.

[130]  Ellen M. Voorhees Text REtrieval Conference (TREC) , 2017 .

[131]  Peter Dayan,et al.  Inference, Attention, and Decision in a Bayesian Neural Architecture , 2004, NIPS.

[132]  Simone Frintrop,et al.  VOCUS: A Visual Attention System for Object Detection and Goal-Directed Search , 2006, Lecture Notes in Computer Science.

[133]  Takatsugu Hirayama,et al.  Computational Models of Human Visual Attention and Their Implementations: A Survey , 2013, IEICE Trans. Inf. Syst..

[134]  Nick Donnelly,et al.  SEarch via recursive rejection (SERR): visual search for single and dual form-conjunction targets , 1994 .

[135]  Sílvio Filipe,et al.  RETRACTED ARTICLE: From the human visual system to the computational models of visual attention: a survey , 2015, Artificial Intelligence Review.

[136]  John K. Tsotsos,et al.  Computational models of visual attention , 2011, Vision Research.

[137]  Antonio Torralba,et al.  Building the gist of a scene: the role of global image features in recognition. , 2006, Progress in brain research.

[138]  D C Van Essen,et al.  Shifter circuits: a computational strategy for dynamic aspects of visual processing. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[139]  E. Knudsen Fundamental components of attention. , 2007, Annual review of neuroscience.

[140]  Laurent Itti,et al.  Realistic avatar eye and head animation using a neurobiological model of visual attention , 2004, SPIE Optics + Photonics.

[141]  Peter J. Burt,et al.  Attention mechanisms for vision in a dynamic world , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[142]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[143]  Antonio Torralba,et al.  Top-down control of visual attention in object detection , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[144]  Ali Borji,et al.  State-of-the-Art in Visual Attention Modeling , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[145]  Robert B. Fisher,et al.  Object-based visual attention for computer vision , 2003, Artif. Intell..

[146]  Nuno Vasconcelos,et al.  Discriminant Saliency for Visual Recognition from Cluttered Scenes , 2004, NIPS.

[147]  L. Itti,et al.  Mechanisms of top-down attention , 2011, Trends in Neurosciences.

[148]  James J. Clark,et al.  Modal Control Of An Attentive Vision System , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[149]  Antón García-Díaz,et al.  Decorrelation and Distinctiveness Provide with Human-Like Saliency , 2009, ACIVS.

[150]  R. Rosenholtz,et al.  A summary-statistic representation in peripheral vision explains visual crowding. , 2009, Journal of vision.

[151]  Kunio Kashino,et al.  A stochastic model of human visual attention with a dynamic Bayesian network , 2010, ArXiv.

[152]  Kunio Kashino,et al.  A Computational Model of Saliency Depletion/Recovery Phenomena for the Salient Region Extraction of Videos , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[153]  Henrik I. Christensen,et al.  Visual Attention Using Game Theory , 2002, Biologically Motivated Computer Vision.

[154]  J. Palmer,et al.  Measuring the effect of attention on simple visual search. , 1993, Journal of experimental psychology. Human perception and performance.

[155]  S. Ullman Visual routines , 1984, Cognition.

[156]  Tirin Moore,et al.  Prefrontal contributions to visual selective attention. , 2013, Annual review of neuroscience.

[157]  Xiao-Jing Wang,et al.  An Integrated Microcircuit Model of Attentional Processing in the Neocortex , 2007, The Journal of Neuroscience.

[158]  S. Shipp The brain circuitry of attention , 2004, Trends in Cognitive Sciences.

[159]  W. Newsome,et al.  Context-dependent computation by recurrent dynamics in prefrontal cortex , 2013, Nature.

[160]  John K. Tsotsos,et al.  Saliency, attention, and visual search: an information theoretic approach. , 2009, Journal of vision.

[161]  Liming Zhang,et al.  Biological Plausibility of Spectral Domain Approach for Spatiotemporal Visual Saliency , 2008, ICONIP.

[162]  Majid Nili Ahmadabadi,et al.  Cost-sensitive learning of top-down modulation for attentional control , 2009, Machine Vision and Applications.

[163]  Peyman Milanfar,et al.  Static and space-time visual saliency detection by self-resemblance. , 2009, Journal of vision.

[164]  Peter Dayan,et al.  Uncertainty and Learning , 2003 .

[165]  I. Biederman,et al.  Dynamic binding in a neural network for shape recognition. , 1992, Psychological review.

[166]  M Corbetta,et al.  Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[167]  Nicolas Riche,et al.  Saliency and Human Fixations: State-of-the-Art and Study of Comparison Metrics , 2013, 2013 IEEE International Conference on Computer Vision.

[168]  Jitendra Malik,et al.  An Information Maximization Model of Eye Movements , 2004, NIPS.

[169]  S. Epstein,et al.  Gamma oscillations mediate stimulus competition and attentional selection in a cortical network model , 2008, Proceedings of the National Academy of Sciences.

[170]  John K. Tsotsos,et al.  Saliency Based on Information Maximization , 2005, NIPS.

[171]  Atsuto Maki,et al.  A computational model of depth-based attention , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[172]  C. Blakemore,et al.  Vision: The iconic bottleneck and the tenuous link between early visual processing and perception , 1990 .

[173]  Yuan Yao,et al.  Simulating human saccadic scanpaths on natural images , 2011, CVPR 2011.

[174]  Fang Fang,et al.  Attention modulates neuronal correlates of interhemispheric integration and global motion perception. , 2014, Journal of vision.

[175]  Wei Zhang,et al.  The Role of Top-down and Bottom-up Processes in Guiding Eye Movements during Visual Search , 2005, NIPS.

[176]  Nuno Vasconcelos,et al.  Discriminant Saliency, the Detection of Suspicious Coincidences, and Applications to Visual Recognition , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[177]  Lihi Zelnik-Manor,et al.  Context-Aware Saliency Detection , 2012, IEEE Trans. Pattern Anal. Mach. Intell..

[178]  José Luis Vicedo González,et al.  TREC: Experiment and evaluation in information retrieval , 2007, J. Assoc. Inf. Sci. Technol..

[179]  Matthew H Tong,et al.  SUN: Top-down saliency using natural statistics , 2009, Visual cognition.

[180]  Frédo Durand,et al.  A Benchmark of Computational Models of Saliency to Predict Human Fixations , 2012 .

[181]  John K. Tsotsos,et al.  Modeling Visual Attention via Selective Tuning , 1995, Artif. Intell..

[182]  R. Krauzlis,et al.  Superior colliculus and visual spatial attention. , 2013, Annual review of neuroscience.

[183]  Henrik I. Christensen,et al.  Computational visual attention systems and their cognitive foundations: A survey , 2010, TAP.

[184]  Frédo Durand,et al.  Learning to predict where humans look , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[185]  G. Logan The CODE theory of visual attention: an integration of space-based and object-based attention. , 1996, Psychological review.

[186]  Helge J. Ritter,et al.  Integrating Context-Free and Context-Dependent Attentional Mechanisms for Gestural Object Reference , 2003, ICVS.

[187]  Nathalie Guyader,et al.  Modelling Spatio-Temporal Saliency to Predict Gaze Direction for Short Videos , 2009, International Journal of Computer Vision.

[188]  Peter Dayan,et al.  Load and Attentional Bayes , 2008, NIPS.

[189]  Pietro Perona,et al.  Graph-Based Visual Saliency , 2006, NIPS.

[190]  ZissermanAndrew,et al.  The Pascal Visual Object Classes Challenge , 2015 .

[191]  Denis Pellerin,et al.  Video summarization using a visual attention model , 2007, 2007 15th European Signal Processing Conference.

[192]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[193]  Ali Borji,et al.  Probabilistic learning of task-specific visual attention , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[194]  Ashley M. Sherman,et al.  Visual search for arbitrary objects in real scenes , 2011, Attention, perception & psychophysics.

[195]  Heinz Hügli,et al.  Computing visual attention from scene depth , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[196]  Ken Nakayama,et al.  Serial and parallel processing of visual feature conjunctions , 1986, Nature.

[197]  Proceedings of the Sixth Text Analysis Conference, TAC 2013, Gaithersburg, Maryland, USA, November 18-19, 2013 , 2013, TAC.

[198]  R. Rosenholtz,et al.  A summary statistic representation in peripheral vision explains visual search. , 2009, Journal of vision.

[199]  Laurent Itti,et al.  An Integrated Model of Top-Down and Bottom-Up Attention for Optimizing Detection Speed , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[200]  Patrick Le Callet,et al.  A coherent computational approach to model bottom-up visual attention , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.