Analysis of global terrorism dynamics by means of entropy and state space portrait

This paper studies the global terrorism dynamics over the period 1970–2014. Data about terrorist events are analyzed by means of several mathematical tools, namely fractal dimension, entropy, state space portrait and multidimensional scaling, that reflect the dynamics in time and space. In a first phase, we consider worldwide events and we unveil the space–time characteristics exhibited by the global terrorism statistics. In a second phase, we group the events into eight geographic regions, and we analyze terrorism dynamics in a regional perspective. Finally, in a third phase, we adopt a complementary analysis of global terrorism based on multidimensional scaling and clustering techniques. The proposed methodology reveals to support new directions for exploring terrorism data.

[1]  José António Tenreiro Machado,et al.  Fractional dynamics and MDS visualization of earthquake phenomena , 2013, Comput. Math. Appl..

[2]  J. A. Tenreiro Machado,et al.  Pseudo Phase Plane and Fractional Calculus modeling of western global economic downturn , 2015, Commun. Nonlinear Sci. Numer. Simul..

[3]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[4]  Sumiyoshi Abe,et al.  Superstatistics, thermodynamics, and fluctuations. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Konstantinos Drakos,et al.  Terrorism-induced structural shifts in financial risk: airline stocks in the aftermath of the September 11th terror attacks , 2004, Transnational Terrorism.

[6]  Inder Jeet Taneja,et al.  Entropy of type (α, β) and other generalized measures in information theory , 1975 .

[7]  Aleksandr Yakovlevich Khinchin,et al.  Mathematical foundations of information theory , 1959 .

[8]  Kevin B. Goldstein Unemployment, Inequality and Terrorism: Another Look at the Relationship between Economics and Terrorism , 2005 .

[9]  António M. Lopes,et al.  Analysis of temperature time-series: Embedding dynamics into the MDS method , 2014, Commun. Nonlinear Sci. Numer. Simul..

[10]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[11]  Joseph L. Zinnes,et al.  Theory and Methods of Scaling. , 1958 .

[12]  J. A. Tenreiro Machado,et al.  A review of power laws in real life phenomena , 2012 .

[13]  José António Tenreiro Machado,et al.  Fractional Order Generalized Information , 2014, Entropy.

[14]  José António Tenreiro Machado,et al.  Analysis and Visualization of Seismic Data Using Mutual Information , 2013, Entropy.

[15]  Charbel Bassil The Effect of Terrorism on Tourism Demand in the Middle East , 2014 .

[16]  Aaron Clauset,et al.  Estimating the historical and future probabilities of large terrorist events , 2012, ArXiv.

[17]  Daniel Meierrieks,et al.  Economic determinants of terrorism , 2014 .

[18]  Samrat Chatterjee,et al.  A framework for analyzing the economic tradeoffs between urban commerce and security against terrorism. , 2014, Risk analysis : an official publication of the Society for Risk Analysis.

[19]  Esteban F. Klor,et al.  The Impact of Terrorism on the Defence Industry , 2008 .

[20]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[21]  Clara-Mihaela Ionescu,et al.  The Human Respiratory System: An Analysis of the Interplay between Anatomy, Structure, Breathing and Fractal Dynamics , 2013 .

[22]  R. Pape,et al.  The Strategic Logic of Suicide Terrorism , 2003, American Political Science Review.

[23]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. II , 1962 .

[24]  Benedict Clements,et al.  Fiscal Consequences of Armed Conflict and Terrorism in Low- and Middle-Income Countries , 2002, SSRN Electronic Journal.

[25]  Brian Burgoon On Welfare and Terror , 2006 .

[26]  António M Lopes,et al.  Fractional order models of leaves , 2014 .

[27]  António M. Lopes,et al.  Rhapsody in fractional , 2014 .

[28]  J. A. Tenreiro Machado,et al.  Power law and entropy analysis of catastrophic phenomena , 2013 .

[29]  A. Lopes,et al.  Dynamic analysis of earthquake phenomena by means of pseudo phase plane , 2013 .

[30]  Behrouz Mirza,et al.  Two-parameter entropies, Sk,r, and their dualities , 2015 .

[31]  Alberto Abadie,et al.  The Economic Costs of Conflict: A Case Study of the , 2003 .

[32]  Peter Nijkamp,et al.  Accessibility of Cities in the Digital Economy , 2004, cond-mat/0412004.

[33]  S. Blomberg,et al.  From (No) Butter to Guns? Understanding the Economic Role in Transnational Terrorism , 2006 .

[34]  M. E. J. Newman,et al.  Power laws, Pareto distributions and Zipf's law , 2005 .

[35]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[36]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[37]  M. Rivero,et al.  Fractional calculus: A survey of useful formulas , 2013, The European Physical Journal Special Topics.

[38]  Christian Beck,et al.  Generalised information and entropy measures in physics , 2009, 0902.1235.

[39]  J. T. Tenreiro Machado,et al.  Integer and fractional-order entropy analysis of earthquake data series , 2016 .

[40]  Ying Luo,et al.  Fractional Order Motion Controls: Luo/Fractional Order Motion Controls , 2012 .

[41]  Jan C. Willems,et al.  Introduction to mathematical systems theory: a behavioral approach, Texts in Applied Mathematics 26 , 1999 .

[42]  A. Clauset,et al.  On the Frequency of Severe Terrorist Events , 2006, physics/0606007.

[43]  R. Hanel,et al.  A comprehensive classification of complex statistical systems and an axiomatic derivation of their entropy and distribution functions , 2010, 1005.0138.

[44]  C. Pinto,et al.  Double power laws, fractals and self-similarity , 2014 .

[45]  G. Kaniadakis,et al.  Maximum entropy principle and power-law tailed distributions , 2009, 0904.4180.

[46]  José António Tenreiro Machado,et al.  Fractional State Space Analysis of Economic Systems , 2015, Entropy.

[47]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[48]  Amélie Charles,et al.  Large shocks and the September 11th terrorist attacks on international stock markets , 2006 .

[49]  Alex P. Schmid,et al.  FRAMEWORKS FOR CONCEPTUALISING TERRORISM , 2004 .

[50]  Tatsuaki Wada,et al.  A two-parameter generalization of Shannon-Khinchin axioms and the uniqueness theorem , 2007 .

[51]  A. Rényi On Measures of Entropy and Information , 1961 .

[52]  António M. Lopes,et al.  Modeling vegetable fractals by means of fractional-order equations , 2016 .

[53]  P. K. Bhatia On Certainty and Generalized Information Measures , 2010 .

[54]  Manfred Schroeder,et al.  Fractals, Chaos, Power Laws: Minutes From an Infinite Paradise , 1992 .

[55]  B. Mandelbrot How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension , 1967, Science.

[56]  M. Ubriaco,et al.  Entropies based on fractional calculus , 2009, 0902.2726.

[57]  Louise Richardson,et al.  What Terrorists Want: Understanding the Enemy, Containing the Threat , 2006 .

[58]  Y. Chen,et al.  Fractional Order Motion Controls , 2012 .

[59]  Domingo Morales,et al.  A summary on entropy statistics , 1995, Kybernetika.

[60]  António M. Lopes,et al.  Fractional Order Control of a Hexapod Robot , 2004 .

[61]  Michel L. Lapidus,et al.  Tambour fractal: vers une résolution de la conjecture de Weyl-Berry pour les valeurs propres du laplacien , 1988 .

[62]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies) , 2006 .

[63]  K. Busch,et al.  The evolution of terrorism from 1914 to 2014. , 2014, Behavioral sciences & the law.

[64]  R. Hall Employment Fluctuations with Equilibrium Wage Stickiness , 2005 .