Survey on Quantum Circuit Compilation for Noisy Intermediate-Scale Quantum Computers: Artificial Intelligence to Heuristics

Computationally expensive applications, including machine learning, chemical simulations, and financial modeling, are promising candidates for noisy intermediate scale quantum (NISQ) computers. In these problems, one important challenge is mapping a quantum circuit onto NISQ hardware while satisfying physical constraints of an underlying quantum architecture. Quantum circuit compilation (QCC) aims to generate feasible mappings such that a quantum circuit can be executed in a given hardware platform with acceptable confidence in outcomes. Physical constraints of a NISQ computer change frequently, requiring QCC process to be repeated often. When a circuit cannot directly be executed on a quantum hardware due to its physical limitations, it is necessary to modify the circuit by adding new quantum gates and auxiliary qubits, increasing its space and time complexity. An inefficient QCC may significantly increase error rate and circuit latency for even the simplest algorithms. In this article, we present artificial intelligence (AI)-based and heuristic-based methods recently reported in the literature that attempt to address these QCC challenges. We group them based on underlying techniques that they implement, such as AI algorithms including genetic algorithms, genetic programming, ant colony optimization and AI planning, and heuristics methods employing greedy algorithms, satisfiability problem solvers, dynamic, and graph optimization techniques. We discuss performance of each QCC technique and evaluate its potential limitations.

[1]  John McCarthy,et al.  Recursive functions of symbolic expressions and their computation by machine, Part I , 1960, Commun. ACM.

[2]  Fernando Magno Quintão Pereira,et al.  Qubit allocation , 2018, CGO.

[3]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[4]  Freddy Lécué,et al.  DL Reasoning and AI Planning for Web Service Composition , 2008, 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[5]  Costin Iancu,et al.  Randomized Compiling for Scalable Quantum Computing on a Noisy Superconducting Quantum Processor , 2020, Physical Review X.

[6]  Robert Wille,et al.  Mapping Quantum Circuits to IBM QX Architectures Using the Minimal Number of SWAP and H Operations , 2019, 2019 56th ACM/IEEE Design Automation Conference (DAC).

[7]  Nikolaj Bjørner,et al.  Z3: An Efficient SMT Solver , 2008, TACAS.

[8]  Margaret Martonosi,et al.  Architecting Noisy Intermediate-Scale Quantum Computers: A Real-System Study , 2020, IEEE Micro.

[9]  Krzysztof Podlaski,et al.  Ant Colony Optimization Implementation for Reversible Synthesis in Walsh-Hadamard Domain , 2020, ICCS.

[10]  Jerry Swan,et al.  Quantum Program Synthesis: Swarm Algorithms and Benchmarks , 2019, EuroGP.

[11]  Qing Yang,et al.  Evolving quantum circuits at the gate level with a hybrid quantum-inspired evolutionary algorithm , 2008, Soft Comput..

[12]  Dmitri Maslov,et al.  Quantum Circuit Placement , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[13]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[14]  Joel J. Wallman,et al.  Noise tailoring for scalable quantum computation via randomized compiling , 2015, 1512.01098.

[15]  Phillip Bonacich,et al.  Some unique properties of eigenvector centrality , 2007, Soc. Networks.

[16]  J. Christopher Beck,et al.  Comparing and Integrating Constraint Programming and Temporal Planning for Quantum Circuit Compilation , 2018, ICAPS.

[18]  Cesare Tinelli,et al.  Satisfiability Modulo Theories , 2021, Handbook of Satisfiability.

[19]  Hideharu Amano,et al.  Extracting Success from IBM’s 20-Qubit Machines Using Error-Aware Compilation , 2019, ACM J. Emerg. Technol. Comput. Syst..

[20]  James A. Hendler,et al.  AI Planning: Systems and Techniques , 1990, AI Mag..

[21]  Mircea Vladutiu,et al.  A Genetic Algorithm Framework Applied to Quantum Circuit Synthesis , 2007, NICSO.

[22]  Niklas Sörensson,et al.  An Extensible SAT-solver , 2003, SAT.

[23]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[24]  Angelo Oddi,et al.  Greedy Randomized Search for Scalable Compilation of Quantum Circuits , 2018, CPAIOR.

[25]  Michael S. Hsiao,et al.  Reversible logic synthesis through ant colony optimization , 2010, 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010).

[26]  Bryan O'Gorman,et al.  Quantum Circuit Compilation : An Emerging Application for Automated Reasoning , 2019 .

[27]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[28]  Martin Lukac,et al.  Quantum encoded quantum evolutionary algorithm for the design of quantum circuits , 2018, CF.

[29]  Joel J. Wallman,et al.  Combining T1 and T2 estimation with randomized benchmarking and bounding the diamond distance , 2020, 2008.09197.

[30]  Gregory J. Barlow,et al.  Article in Press Robotics and Autonomous Systems ( ) – Robotics and Autonomous Systems Fitness Functions in Evolutionary Robotics: a Survey and Analysis , 2022 .

[31]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[32]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[33]  Rolf Drechsler,et al.  Multi-objective Synthesis of Quantum Circuits Using Genetic Programming , 2018, RC.

[34]  Vitaly G. Deibuk,et al.  Design of a Ternary Reversible/Quantum Adder using Genetic Algorithm , 2015 .

[35]  Abdullah Ash-Saki,et al.  QURE: Qubit Re-allocation in Noisy Intermediate-Scale Quantum Computers , 2019, 2019 56th ACM/IEEE Design Automation Conference (DAC).

[36]  Cesare Tinelli,et al.  Solving SAT and SAT Modulo Theories: From an abstract Davis--Putnam--Logemann--Loveland procedure to DPLL(T) , 2006, JACM.

[37]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[38]  Gushu Li,et al.  Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices , 2018, ASPLOS.

[39]  Dipali Bansal,et al.  Improved ant colony optimization for quantum cost reduction , 2020, Bulletin of Electrical Engineering and Informatics.

[40]  Janusz Kusyk,et al.  Survey on evolutionary computation methods for cybersecurity of mobile ad hoc networks , 2018, Evolutionary Intelligence.

[41]  A. Bautu,et al.  QUANTUM CIRCUIT DESIGN BY MEANS OF GENETIC PROGRAMMING ê , 2007 .

[42]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[43]  Anupam Chattopadhyay,et al.  Depth-Optimal Quantum Circuit Placement for Arbitrary Topologies , 2017, ArXiv.

[44]  Bryan O'Gorman,et al.  Planning for Compilation of a Quantum Algorithm for Graph Coloring , 2020, ECAI.

[45]  Benjamin I. P. Rubinstein Evolving quantum circuits using genetic programming , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[46]  Pawel Kerntopf A COMPARISON OF LOGICAL EFFICIENCY OF REVERSIBLE AND CONVENTIONAL GATES , 2000 .

[47]  David Eppstein,et al.  The Polyhedral Approach to the Maximum Planar Subgraph Problem: New Chances for Related Problems , 1994, GD.

[48]  Stephan Eidenbenz,et al.  The Quantum Alternating Operator Ansatz on Maximum k-Vertex Cover , 2019, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).

[49]  K. S. Fu,et al.  Recent Developments in Digital Pattern Recognition , 1980 .

[50]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[51]  Moinuddin K. Qureshi,et al.  Not All Qubits Are Created Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers , 2018, ASPLOS.

[52]  Mario Vento,et al.  A (sub)graph isomorphism algorithm for matching large graphs , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Akihiro Kishimoto,et al.  On the Complexity of Quantum Circuit Compilation , 2018, SOCS.

[54]  Maria Fox,et al.  AUV mission control via temporal planning , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[55]  Margaret Martonosi,et al.  Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers , 2019, ASPLOS.

[56]  Pierluigi Crescenzi,et al.  A compendium of NP optimization problems , 1994, WWW Spring 1994.

[57]  Saraju P. Mohanty,et al.  Reversible circuit synthesis using ACO and SA based Quine-McCluskey method , 2013, 2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS).

[58]  Alan Mishchenko,et al.  Automated Synthesis of Generalized Reversible Cascades using Genetic Algorithms , 2002 .

[59]  Robert Wille,et al.  Compiling SU(4) quantum circuits to IBM QX architectures , 2018, ASP-DAC.

[60]  David W. Corne,et al.  Multi-objective evolutionary algorithms for quantum circuit discovery , 2018, ArXiv.

[61]  Markus Püschel,et al.  In search of the optimal Walsh-Hadamard transform , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[62]  Jr.,et al.  Multivalued logic gates for quantum computation , 2000, quant-ph/0002033.

[63]  Inês Lynce,et al.  Conflict-Driven Clause Learning SAT Solvers , 2009, Handbook of Satisfiability.

[64]  Piergiorgio Bertoli,et al.  Extending PDDL to nondeterminism, limited sensing and iterative conditional plans , 2003 .

[65]  Gian Giacomo Guerreschi,et al.  Two-step approach to scheduling quantum circuits , 2018, Quantum Science and Technology.

[66]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[67]  Shigeru Yamashita,et al.  Quantum Circuit Optimization by Changing the Gate Order for 2D Nearest Neighbor Architectures , 2018, RC.

[68]  Naser Mohammadzadeh,et al.  Qubit mapping of one-way quantum computation patterns onto 2D nearest-neighbor architectures , 2019, Quantum Inf. Process..

[69]  Giovanni De Micheli,et al.  SAT-based {CNOT, T} Quantum Circuit Synthesis , 2018, RC.

[70]  Arvind,et al.  Efficient experimental design of high-fidelity three-qubit quantum gates via genetic programming , 2017, Quantum Information Processing.

[71]  Moinuddin K. Qureshi,et al.  Ensemble of Diverse Mappings: Improving Reliability of Quantum Computers by Orchestrating Dissimilar Mistakes , 2019, MICRO.

[72]  Robert Wille,et al.  Make it reversible: Efficient embedding of non-reversible functions , 2017, Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.

[73]  Marco Dorigo,et al.  An Introduction to Ant Colony Optimization , 2018, Handbook of Approximation Algorithms and Metaheuristics.

[74]  Nikolaj Bjørner,et al.  νZ - An Optimizing SMT Solver , 2015, TACAS.

[75]  Samah Mohamed Saeed,et al.  A Lightweight Approach to Detect Malicious/Unexpected Changes in the Error Rates of NISQ Computers , 2020, 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD).

[76]  Mengjie Zhang,et al.  Image Segmentation: A Survey of Methods Based on Evolutionary Computation , 2014, SEAL.

[77]  John Kubiatowicz,et al.  Automated generation of layout and control for quantum circuits , 2007, CF '07.

[78]  Andrew M. Childs,et al.  Circuit Transformations for Quantum Architectures , 2019, TQC.

[79]  Derek Bruening,et al.  An infrastructure for adaptive dynamic optimization , 2003, International Symposium on Code Generation and Optimization, 2003. CGO 2003..

[80]  Swaroop Ghosh,et al.  MUQUT: Multi-Constraint Quantum Circuit Mapping on NISQ Computers: Invited Paper , 2019, 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[81]  Lorenza Viola,et al.  NMR quantum information processing and entanglement , 2002, Quantum Inf. Comput..

[82]  Angelo Oddi,et al.  An Innovative Genetic Algorithm for the Quantum Circuit Compilation Problem , 2019, AAAI.

[83]  Moinuddin K. Qureshi,et al.  Mitigating Measurement Errors in Quantum Computers by Exploiting State-Dependent Bias , 2019, MICRO.

[84]  Huiyang Zhou,et al.  Quantum Circuits for Dynamic Runtime Assertions in Quantum Computation , 2019, IEEE Computer Architecture Letters.

[85]  Liu Huiying,et al.  CryptoMiniSAT Solver Based Algebraic Side-Channel Attack on PRESENT , 2011, 2011 First International Conference on Instrumentation, Measurement, Computer, Communication and Control.

[86]  Antonin Ponsich,et al.  A Survey on Multiobjective Evolutionary Algorithms for the Solution of the Portfolio Optimization Problem and Other Finance and Economics Applications , 2013, IEEE Transactions on Evolutionary Computation.

[87]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.