An Algorithm to Verify Local Threshold Testability of Deterministic Finite Automata

A locally threshold testable language L is a language with the property that for some nonnegative integers k and l, whether or not a word u is in the language L depends on (1) the prefix and suffix of the word u of length k-1 and (2) the set of intermediate substrings of length k of the word u where the sets of substrings occurring at least j times are the same, for j ? l. For given k and l the language is called l-threshold k-testable. A finite deterministic automaton is called l-threshold k-testable if the automaton accepts a l-threshold k-testable language.In this paper, the necessary and sufficient conditions for an automaton to be locally threshold testable are found. We introduce the first polynomial time algorithm to verify local threshold testability of the automaton based on this characterization.New version of polynomial time algorithm to verify the local testability will be presented too.

[1]  A. N. Trahtman Identities of locally testable semigroups , 1999 .

[2]  Robert McNaughton,et al.  Counter-Free Automata (M.I.T. research monograph no. 65) , 1971 .

[3]  Thomas Wilke,et al.  Locally Threshold Testable Languages of Infinite Words , 1993, STACS.

[4]  Jorge Almeida,et al.  Implicit operations on finite J-trivial semigroups and a conjecture of I. Simon , 1991 .

[5]  G. Lallement Semigroups and combinatorial applications , 1979 .

[6]  Danièle Beauquier,et al.  Languages and Scanners , 1991, Theor. Comput. Sci..

[7]  Thomas Wilke,et al.  An Algebraic Theory for Regular Languages of Finite and Infinite Words , 1993, Int. J. Algebra Comput..

[8]  Janusz A. Brzozowski,et al.  Characterizations of locally testable events , 1973, Discret. Math..

[9]  A. N. Trahtman A Precise Estimation of the Order of Local Testability of a Deterministic Finite Automaton , 1997 .

[10]  T. Head Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. , 1987, Bulletin of mathematical biology.

[11]  Yechezkel Zalcstein,et al.  Locally Testable Languages , 1972, J. Comput. Syst. Sci..

[12]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[13]  Abraham Ginzburg,et al.  About Some Properties of Definite, Reverse-Definite and Related Automata , 1966, IEEE Trans. Electron. Comput..

[14]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[15]  A. N. Trahtman The varieties of n-testable semigroups , 1983 .

[16]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[17]  Friedhelm Hinz Classes of Picture Languages that Cannot be Distinguished in the Chain Code Concept and Deletion of Redundant Retreats , 1989, STACS.

[18]  Wolfgang Thomas,et al.  Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..

[19]  Zoltán Ésik,et al.  Modeling Literal Morphisms by Shuffle , 1998 .

[20]  Marie-Pierre Béal,et al.  On the Bound of the Synchronization Delay of a Local Automaton , 1998, Theor. Comput. Sci..

[21]  Jan Reiterman,et al.  The Birkhoff theorem for finite algebras , 1982 .

[22]  Sam M. Kim,et al.  Computing the Order of a Locally Testable Automaton , 1994, SIAM J. Comput..

[23]  Micha A. Perles,et al.  The Theory of Definite Automata , 1963, IEEE Trans. Electron. Comput..

[24]  Danièle Beauquier,et al.  Factors of Words , 1989, ICALP.

[25]  Yechezkel Zalcstein,et al.  Locally testable semigroups , 1972 .

[26]  Pascal Caron LANGAGE: A Maple Package for Automaton Characterization of Regular Languages , 1997, Workshop on Implementing Automata.

[27]  Saburo Muroga,et al.  Lower Bound of the Number of Threshold Functions , 1966, IEEE Trans. Electron. Comput..

[28]  Sam M. Kim,et al.  A Polynomial Time Algorithm for the Local Testability Problem of Deterministic Finite Automata , 1989, IEEE Trans. Computers.

[29]  Stuart W. Margolis,et al.  Languages and Inverse Semigroups , 1984, ICALP.

[30]  Jean-Camille Birget Strict Local Testability of the Finite Control of Two-Way Automata and of Regular Picture Description Languages , 1991, Int. J. Algebra Comput..

[31]  A. N. Trahtman A POLYNOMIAL TIME ALGORITHM FOR LOCAL TESTABILITY AND ITS LEVEL , 1999 .