An Algorithm to Verify Local Threshold Testability of Deterministic Finite Automata
暂无分享,去创建一个
[1] A. N. Trahtman. Identities of locally testable semigroups , 1999 .
[2] Robert McNaughton,et al. Counter-Free Automata (M.I.T. research monograph no. 65) , 1971 .
[3] Thomas Wilke,et al. Locally Threshold Testable Languages of Infinite Words , 1993, STACS.
[4] Jorge Almeida,et al. Implicit operations on finite J-trivial semigroups and a conjecture of I. Simon , 1991 .
[5] G. Lallement. Semigroups and combinatorial applications , 1979 .
[6] Danièle Beauquier,et al. Languages and Scanners , 1991, Theor. Comput. Sci..
[7] Thomas Wilke,et al. An Algebraic Theory for Regular Languages of Finite and Infinite Words , 1993, Int. J. Algebra Comput..
[8] Janusz A. Brzozowski,et al. Characterizations of locally testable events , 1973, Discret. Math..
[9] A. N. Trahtman. A Precise Estimation of the Order of Local Testability of a Deterministic Finite Automaton , 1997 .
[10] T. Head. Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. , 1987, Bulletin of mathematical biology.
[11] Yechezkel Zalcstein,et al. Locally Testable Languages , 1972, J. Comput. Syst. Sci..
[12] R. McNaughton,et al. Counter-Free Automata , 1971 .
[13] Abraham Ginzburg,et al. About Some Properties of Definite, Reverse-Definite and Related Automata , 1966, IEEE Trans. Electron. Comput..
[14] Robert E. Tarjan,et al. Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..
[15] A. N. Trahtman. The varieties of n-testable semigroups , 1983 .
[16] Alfred V. Aho,et al. The Design and Analysis of Computer Algorithms , 1974 .
[17] Friedhelm Hinz. Classes of Picture Languages that Cannot be Distinguished in the Chain Code Concept and Deletion of Redundant Retreats , 1989, STACS.
[18] Wolfgang Thomas,et al. Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..
[19] Zoltán Ésik,et al. Modeling Literal Morphisms by Shuffle , 1998 .
[20] Marie-Pierre Béal,et al. On the Bound of the Synchronization Delay of a Local Automaton , 1998, Theor. Comput. Sci..
[21] Jan Reiterman,et al. The Birkhoff theorem for finite algebras , 1982 .
[22] Sam M. Kim,et al. Computing the Order of a Locally Testable Automaton , 1994, SIAM J. Comput..
[23] Micha A. Perles,et al. The Theory of Definite Automata , 1963, IEEE Trans. Electron. Comput..
[24] Danièle Beauquier,et al. Factors of Words , 1989, ICALP.
[25] Yechezkel Zalcstein,et al. Locally testable semigroups , 1972 .
[26] Pascal Caron. LANGAGE: A Maple Package for Automaton Characterization of Regular Languages , 1997, Workshop on Implementing Automata.
[27] Saburo Muroga,et al. Lower Bound of the Number of Threshold Functions , 1966, IEEE Trans. Electron. Comput..
[28] Sam M. Kim,et al. A Polynomial Time Algorithm for the Local Testability Problem of Deterministic Finite Automata , 1989, IEEE Trans. Computers.
[29] Stuart W. Margolis,et al. Languages and Inverse Semigroups , 1984, ICALP.
[30] Jean-Camille Birget. Strict Local Testability of the Finite Control of Two-Way Automata and of Regular Picture Description Languages , 1991, Int. J. Algebra Comput..
[31] A. N. Trahtman. A POLYNOMIAL TIME ALGORITHM FOR LOCAL TESTABILITY AND ITS LEVEL , 1999 .