Complete Problems in the First-Order Predicate Calculus

Abstract Some problems concerning the satisfiability of first-order predicate calculus formulae in Schonfinkel-Bernays form provide a natural hierarchy of complete problems for various complexity classes. Also, problems concerning the existence of resolution proofs from sets of clauses not necessarily in Schonfinkel-Bernays form provide another such hierarchy. In this way we obtain problems complete for P, NP, PSPACE, deterministic and nondeterministic exponential, deterministic and nondeterministic double exponential time, and exponential space. The results concerning resolution proofs may have practical implications for the design of resolution theorem proving programs. Also, these results enable us to make precise statements about the relative difficulty of various resolution strategies. Some connections with temporal logic and alternating Turing machines are discussed.

[1]  Amir Pnueli,et al.  The temporal logic of programs , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[2]  Harry R. Lewis,et al.  Complexity Results for Classes of Quantificational Formulas , 1980, J. Comput. Syst. Sci..

[3]  Neil D. Jones,et al.  Complete problems for deterministic polynomial time , 1974, Symposium on the Theory of Computing.

[4]  Neil D. Jones,et al.  Turing machines and the spectra of first-order formulas with equality , 1972, STOC.

[5]  Ernst W. Mayr An Algorithm for the General Petri Net Reachability Problem , 1984, SIAM J. Comput..

[6]  Mike Paterson,et al.  Linear unification , 1976, STOC '76.

[7]  J. A. Robinson,et al.  Automatic Deduction with Hyper-Resolution , 1983 .

[8]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[9]  Zohar Manna,et al.  Verification of concurrent programs, Part I: The temporal framework , 1981 .

[10]  Dexter Kozen,et al.  Lower bounds for natural proof systems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  Neil Immerman,et al.  One-way log-tape reductions , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[13]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[14]  Ernst W. Mayr,et al.  An algorithm for the general Petri net reachability problem , 1981, STOC '81.

[15]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[16]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[17]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[18]  A. Prasad Sistla,et al.  The complexity of propositional linear temporal logics , 1982, STOC '82.

[19]  Neil D. Jones,et al.  Turing machines and the spectra of first-order formulas , 1974, Journal of Symbolic Logic.

[20]  William F. Clocksin,et al.  Programming in Prolog , 1981, Springer Berlin Heidelberg.

[21]  Ronald Fagin Generalized first-order spectra, and polynomial. time recognizable sets , 1974 .