A Learning Framework for Winner-Take-All Networks with Stochastic Synapses

Many recent generative models make use of neural networks to transform the probability distribution of a simple low-dimensional noise process into the complex distribution of the data. This raises the question of whether biological networks operate along similar principles to implement a probabilistic model of the environment through transformations of intrinsic noise processes. The intrinsic neural and synaptic noise processes in biological networks, however, are quite different from the noise processes used in current abstract generative networks. This, together with the discrete nature of spikes and local circuit interactions among the neurons, raises several difficulties when using recent generative modeling frameworks to train biologically motivated models. In this letter, we show that a biologically motivated model based on multilayer winner-take-all circuits and stochastic synapses admits an approximate analytical description. This allows us to use the proposed networks in a variational learning setting where stochastic backpropagation is used to optimize a lower bound on the data log likelihood, thereby learning a generative model of the data. We illustrate the generality of the proposed networks and learning technique by using them in a structured output prediction task and a semisupervised learning task. Our results extend the domain of application of modern stochastic network architectures to networks where synaptic transmission failure is the principal noise mechanism.

[1]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[2]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  Chris Eliasmith,et al.  Spiking Deep Networks with LIF Neurons , 2015, ArXiv.

[4]  Gert Cauwenberghs,et al.  Deep Supervised Learning Using Local Errors , 2017, Front. Neurosci..

[5]  Jürgen Schmidhuber,et al.  Understanding Locally Competitive Networks , 2014, ICLR.

[6]  Gert Cauwenberghs,et al.  Learning Non-deterministic Representations with Energy-based Ensembles , 2014, ICLR.

[7]  Professor Moshe Abeles,et al.  Local Cortical Circuits , 1982, Studies of Brain Function.

[8]  Rodrigo Alvarez-Icaza,et al.  Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations , 2014, Proceedings of the IEEE.

[9]  Pierre Baldi,et al.  Learning in the Machine: Random Backpropagation and the Learning Channel , 2016, ArXiv.

[10]  R. J. Williams,et al.  Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning , 2004, Machine Learning.

[11]  Pieter Abbeel,et al.  Variational Lossy Autoencoder , 2016, ICLR.

[12]  Wei Ji Ma,et al.  Bayesian inference with probabilistic population codes , 2006, Nature Neuroscience.

[13]  Gert Cauwenberghs,et al.  Event-driven contrastive divergence for spiking neuromorphic systems , 2013, Front. Neurosci..

[14]  J. Borst The low synaptic release probability in vivo , 2010, Trends in Neurosciences.

[15]  A. Faisal,et al.  Noise in the nervous system , 2008, Nature Reviews Neuroscience.

[16]  Tobi Delbruck,et al.  Real-time classification and sensor fusion with a spiking deep belief network , 2013, Front. Neurosci..

[17]  Marc-Oliver Gewaltig,et al.  NEST (NEural Simulation Tool) , 2007, Scholarpedia.

[18]  Karl J. Friston Learning and inference in the brain , 2003, Neural Networks.

[19]  Jongkil Park,et al.  A 65k-neuron 73-Mevents/s 22-pJ/event asynchronous micro-pipelined integrate-and-fire array transceiver , 2014, 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings.

[20]  T. Branco,et al.  The probability of neurotransmitter release: variability and feedback control at single synapses , 2009, Nature Reviews Neuroscience.

[21]  Colin J. Akerman,et al.  Random synaptic feedback weights support error backpropagation for deep learning , 2016, Nature Communications.

[22]  E. Gumbel Statistical Theory of Extreme Values and Some Practical Applications : A Series of Lectures , 1954 .

[23]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[24]  Giacomo Indiveri,et al.  Rhythmic Inhibition Allows Neural Networks to Search for Maximally Consistent States , 2015, Neural Computation.

[25]  D. Georgescauld Local Cortical Circuits, An Electrophysiological Study , 1983 .

[26]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[27]  Deepak Khosla,et al.  Spiking Deep Convolutional Neural Networks for Energy-Efficient Object Recognition , 2014, International Journal of Computer Vision.

[28]  Wolfgang Maass,et al.  Bayesian Computation Emerges in Generic Cortical Microcircuits through Spike-Timing-Dependent Plasticity , 2013, PLoS Comput. Biol..

[29]  Yee Whye Teh,et al.  The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables , 2016, ICLR.

[30]  Yoshua Bengio,et al.  Deep Generative Stochastic Networks Trainable by Backprop , 2013, ICML.

[31]  Wolfgang Maass,et al.  Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons , 2011, PLoS Comput. Biol..

[32]  W. Singer,et al.  The gamma cycle , 2007, Trends in Neurosciences.

[33]  Yoshua Bengio,et al.  Classification using discriminative restricted Boltzmann machines , 2008, ICML '08.

[34]  Yoshua Bengio,et al.  Early Inference in Energy-Based Models Approximates Back-Propagation , 2015, ArXiv.

[35]  Tapani Raiko,et al.  Semi-supervised Learning with Ladder Networks , 2015, NIPS.

[36]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[37]  A Aertsen,et al.  Accurate Spike Synchronization in Cortex , 1998, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[38]  C. Stevens,et al.  An evaluation of causes for unreliability of synaptic transmission. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Siddharth Joshi,et al.  Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines , 2015, Front. Neurosci..

[40]  Tapani Raiko,et al.  Techniques for Learning Binary Stochastic Feedforward Neural Networks , 2014, ICLR.

[41]  Harri Valpola,et al.  From neural PCA to deep unsupervised learning , 2014, ArXiv.

[42]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[43]  Ben Poole,et al.  Categorical Reparameterization with Gumbel-Softmax , 2016, ICLR.

[44]  Ole Winther,et al.  Ladder Variational Autoencoders , 2016, NIPS.

[45]  Sergey Levine,et al.  MuProp: Unbiased Backpropagation for Stochastic Neural Networks , 2015, ICLR.

[46]  W Singer,et al.  All‐or‐none Excitatory Postsynaptic Potentials in the Rat Visual Cortex , 1995, The European journal of neuroscience.

[47]  Xiaohui Xie,et al.  Equivalence of Backpropagation and Contrastive Hebbian Learning in a Layered Network , 2003, Neural Computation.

[48]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[49]  Wolfgang Maass,et al.  Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons , 2011, PLoS Comput. Biol..

[50]  Yoshua Bengio,et al.  Equilibrium Propagation: Bridging the Gap between Energy-Based Models and Backpropagation , 2016, Front. Comput. Neurosci..

[51]  Matthew Cook,et al.  Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).

[52]  K. Martin,et al.  Excitatory synaptic inputs to spiny stellate cells in cat visual cortex , 1996, Nature.

[53]  Marc-Oliver Gewaltig,et al.  NEST (NEural Simulation Tool) , 2007, Scholarpedia.

[54]  Sophie Denève,et al.  Bayesian Spiking Neurons I: Inference , 2008, Neural Computation.

[55]  Jürgen Schmidhuber,et al.  Compete to Compute , 2013, NIPS.

[56]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[57]  David M. Blei,et al.  The Generalized Reparameterization Gradient , 2016, NIPS.

[58]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[59]  Razvan Pascanu,et al.  Theano: new features and speed improvements , 2012, ArXiv.

[60]  Arild Nøkland,et al.  Direct Feedback Alignment Provides Learning in Deep Neural Networks , 2016, NIPS.

[61]  R. Gregory Perceptions as hypotheses. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[62]  Yoshua Bengio,et al.  Maxout Networks , 2013, ICML.

[63]  Steve B. Furber,et al.  The SpiNNaker Project , 2014, Proceedings of the IEEE.

[64]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[65]  Giacomo Indiveri,et al.  A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses , 2015, Front. Neurosci..

[66]  Geoffrey E. Hinton,et al.  The Helmholtz Machine , 1995, Neural Computation.

[67]  Kaushik Roy,et al.  Unsupervised regenerative learning of hierarchical features in Spiking Deep Networks for object recognition , 2016, 2016 International Joint Conference on Neural Networks (IJCNN).