Low-Discrepancy Curves and Efficient Coverage of Space
暂无分享,去创建一个
Ram Rajagopal | Subramanian Ramamoorthy | Qing Ruan | Lothar Wenzel | S. Ramamoorthy | Ram Rajagopal | Q. Ruan | L. Wenzel
[1] E. Wright,et al. An Introduction to the Theory of Numbers , 1939 .
[2] R. D. Richtmyer. THE EVALUATION OF DEFINITE INTEGRALS, AND A QUASI-MONTE-CARLO METHOD BASED ON THE PROPERTIES OF ALGEBRAIC NUMBERS , 1951 .
[3] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[4] J. Hammersley,et al. Monte Carlo Methods , 1965 .
[5] W. Reiher. Hammersley, J. M., D. C. Handscomb: Monte Carlo Methods. Methuen & Co., London, and John Wiley & Sons, New York, 1964. VII + 178 S., Preis: 25 s , 1966 .
[6] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[7] William H. Press,et al. Numerical recipes in C. The art of scientific computing , 1987 .
[8] F. A. Seiler,et al. Numerical Recipes in C: The Art of Scientific Computing , 1989 .
[9] William H. Press,et al. Numerical recipes , 1990 .
[10] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[11] Daniel E. Koditschek,et al. Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..
[12] J. Mccleary,et al. Geometry from a Differentiable Viewpoint: Recapitulation and coda , 1994 .
[13] Russel E. Caflisch,et al. Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..
[14] J. Mccleary. Geometry from a Differentiable Viewpoint: Recapitulation and coda , 1995 .
[15] Godfrey H. Hardy,et al. An introduction to the theory of numbers (5. ed.) , 1995 .
[16] F. James,et al. Multidimensional sampling for simulation and integration: measures, discrepancies, and quasi-random numbers , 1996, hep-ph/9606309.
[17] W. J. Whiten,et al. Computational investigations of low-discrepancy sequences , 1997, TOMS.
[18] Alfred Gray,et al. Modern differential geometry of curves and surfaces with Mathematica (2. ed.) , 1998 .
[19] William H. Press,et al. Numerical recipes in C , 2002 .
[20] Steven M. LaValle,et al. Incremental low-discrepancy lattice methods for motion planning , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).
[21] Steven M. LaValle,et al. On the Relationship between Classical Grid Search and Probabilistic Roadmaps , 2004, Int. J. Robotics Res..
[22] Howie Choset,et al. Coverage for robotics – A survey of recent results , 2001, Annals of Mathematics and Artificial Intelligence.
[23] Steven M. LaValle,et al. Incremental Grid Sampling Strategies in Robotics , 2004, WAFR.
[24] M. Combescure. Hamiltonian Chaos and Fractional Dynamics , 2005 .
[25] D. R. Heath-Brown,et al. An Introduction to the Theory of Numbers, Sixth Edition , 2008 .