Probabilistic modeling in dynamic information retrieval

Dynamic modeling is used to design systems that are adaptive to their changing environment and is currently poorly understood in information retrieval systems. Common elements in the information retrieval methodology, such as documents, relevance, users and tasks, are dynamic entities that may evolve over the course of several interactions, which is increasingly captured in search log datasets. Conventional frameworks and models in information retrieval treat these elements as static, or only consider local interactivity, without consideration for the optimisation of all potential interactions. Further to this, advances in information retrieval interface, contextual personalization and ad display demand models that can intelligently react to users over time. This thesis proposes a new area of information retrieval research called Dynamic Information Retrieval. The term dynamics is defined and what it means within the context of information retrieval. Three examples of current areas of research in information retrieval which can be described as dynamic are covered: multi-page search, online learning to rank and session search. A probabilistic model for dynamic information retrieval is introduced and analysed, and applied in practical algorithms throughout. This framework is based on the partially observable Markov decision process model, and solved using dynamic programming and the Bellman equation. Comparisons are made against well-established techniques that show improvements in ranking quality and in particular, document diversification. The limitations of this approach are explored and appropriate approximation techniques are investigated, resulting in the development of an efficient multi-armed bandit based ranking algorithm. Finally, the extraction of dynamic behaviour from search logs is also demonstrated as an application, showing that dynamic information retrieval modeling is an effective and versatile tool in state of the art information retrieval research.

[1]  Milad Shokouhi,et al.  Learning to personalize query auto-completion , 2013, SIGIR.

[2]  W. Bruce Croft,et al.  Query reformulation using anchor text , 2010, WSDM '10.

[3]  Jun Wang,et al.  On statistical analysis and optimization of information retrieval effectiveness metrics , 2010, SIGIR.

[4]  Michael I. Jordan Computational aspects of motor control and motor learning , 2008 .

[5]  D. Aldous Exchangeability and related topics , 1985 .

[6]  Filip Radlinski,et al.  Query chains: learning to rank from implicit feedback , 2005, KDD '05.

[7]  Nicolò Cesa-Bianchi,et al.  Gambling in a rigged casino: The adversarial multi-armed bandit problem , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[8]  Susan T. Dumais,et al.  Learning user interaction models for predicting web search result preferences , 2006, SIGIR.

[9]  Susan T. Dumais,et al.  Personalizing atypical web search sessions , 2013, WSDM.

[10]  Dian Tjondronegoro,et al.  Human-computer interaction: the impact of users' cognitive styles on query reformulation behaviour during web searching , 2012, OZCHI.

[11]  Marc Najork,et al.  A large‐scale study of the evolution of Web pages , 2003, WWW '03.

[12]  Wei Chu,et al.  Unbiased offline evaluation of contextual-bandit-based news article recommendation algorithms , 2010, WSDM '11.

[13]  Jade Goldstein-Stewart,et al.  The Use of MMR, Diversity-Based Reranking for Reordering Documents and Producing Summaries , 1998, SIGIR Forum.

[14]  Milad Shokouhi,et al.  Investigating the Effectiveness of Clickthrough Data for Document Reordering , 2008, ECIR.

[15]  Susan T. Dumais,et al.  To personalize or not to personalize: modeling queries with variation in user intent , 2008, SIGIR '08.

[16]  ChengXiang Zhai,et al.  Statistical Language Models for Information Retrieval: A Critical Review , 2008, Found. Trends Inf. Retr..

[17]  Thorsten Joachims,et al.  Eye-tracking analysis of user behavior in WWW search , 2004, SIGIR '04.

[18]  D. Barrios-Aranibar,et al.  LEARNING FROM DELAYED REWARDS USING INFLUENCE VALUES APPLIED TO COORDINATION IN MULTI-AGENT SYSTEMS , 2007 .

[19]  Leif Azzopardi,et al.  The economics in interactive information retrieval , 2011, SIGIR.

[20]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[21]  H. Robbins,et al.  Asymptotically efficient adaptive allocation rules , 1985 .

[22]  Olivier Chapelle,et al.  A dynamic bayesian network click model for web search ranking , 2009, WWW '09.

[23]  Larry Heck,et al.  The Conversational Web , 2012 .

[24]  Filip Radlinski,et al.  Learning diverse rankings with multi-armed bandits , 2008, ICML '08.

[25]  Steve Fox,et al.  Evaluating implicit measures to improve web search , 2005, TOIS.

[26]  Jun Wang,et al.  Iterative Expectation for Multi Period Information Retrieval , 2013, ArXiv.

[27]  Jun Wang,et al.  Dynamic information retrieval modeling (Tutorial) , 2014 .

[28]  Norbert Fuhr,et al.  A probability ranking principle for interactive information retrieval , 2008, Information Retrieval.

[29]  Ryen W. White,et al.  Modeling dwell time to predict click-level satisfaction , 2014, WSDM.

[30]  Amanda Spink,et al.  Model for organizational knowledge creation and strategic use of information: Research Articles , 2005 .

[31]  Jun Wang,et al.  Dynamical information retrieval modelling: a portfolio-armed bandit machine approach , 2012, WWW.

[32]  Ian Ruthven,et al.  Interactive information retrieval , 2008, Annu. Rev. Inf. Sci. Technol..

[33]  J. Gittins Bandit processes and dynamic allocation indices , 1979 .

[34]  R. Agrawal Sample mean based index policies by O(log n) regret for the multi-armed bandit problem , 1995, Advances in Applied Probability.

[35]  Ingmar Weber,et al.  Type less, find more: fast autocompletion search with a succinct index , 2006, SIGIR.

[36]  Katja Hofmann,et al.  Fast and reliable online learning to rank for information retrieval , 2013, SIGIR Forum.

[37]  William S. Cooper,et al.  On selecting a measure of retrieval effectiveness , 1973, J. Am. Soc. Inf. Sci..

[38]  Jun Wang,et al.  Dynamic Information Retrieval: Theoretical Framework and Application , 2015, ICTIR.

[39]  Grace Hui Yang,et al.  Win-win search: dual-agent stochastic game in session search , 2014, SIGIR.

[40]  Charles L. A. Clarke,et al.  Novelty and diversity in information retrieval evaluation , 2008, SIGIR '08.

[41]  Vassilis Plachouras,et al.  Online learning from click data for sponsored search , 2008, WWW.

[42]  Cyril W. Cleverdon,et al.  Factors determining the performance of indexing systems , 1966 .

[43]  Jun Wang,et al.  Using control theory for stable and efficient recommender systems , 2012, WWW.

[44]  Charles L. A. Clarke,et al.  Classifying and Characterizing Query Intent , 2009, ECIR.

[45]  W. Bruce Croft,et al.  Query expansion using local and global document analysis , 1996, SIGIR '96.

[46]  Yiqun Liu,et al.  From Skimming to Reading: A Two-stage Examination Model for Web Search , 2014, CIKM.

[47]  John Langford,et al.  The Epoch-Greedy Algorithm for Multi-armed Bandits with Side Information , 2007, NIPS.

[48]  Jun Wang,et al.  Internet Advertising: An Interplay among Advertisers, Online Publishers, Ad Exchanges and Web Users , 2012, ArXiv.

[49]  Quoc V. Le,et al.  Learning to Rank with Non-Smooth Cost Functions , 2007 .

[50]  R. Bellman A Markovian Decision Process , 1957 .

[51]  Deepak Agarwal,et al.  Click shaping to optimize multiple objectives , 2011, KDD.

[52]  Amanda Spink,et al.  How are we searching the World Wide Web? A comparison of nine search engine transaction logs , 2006, Inf. Process. Manag..

[53]  Jaime Teevan,et al.  Implicit feedback for inferring user preference: a bibliography , 2003, SIGF.

[54]  Susan T. Dumais,et al.  Personalized information delivery: an analysis of information filtering methods , 1992, CACM.

[55]  H. Vincent Poor,et al.  Cognitive Medium Access: Exploration, Exploitation, and Competition , 2007, IEEE Transactions on Mobile Computing.

[56]  Chao Liu,et al.  Efficient multiple-click models in web search , 2009, WSDM '09.

[57]  Yiqun Liu,et al.  How do users describe their information need: Query recommendation based on snippet click model , 2011, Expert Syst. Appl..

[58]  Deepayan Chakrabarti,et al.  Multi-armed bandit problems with dependent arms , 2007, ICML '07.

[59]  Katja Hofmann,et al.  Reusing historical interaction data for faster online learning to rank for IR , 2013, DIR.

[60]  Ryen W. White,et al.  A study of interface support mechanisms for interactive information retrieval , 2006 .

[61]  Amanda Spink,et al.  Use of query reformulation and relevance feedback by Excite users , 2000, Internet Res..

[62]  Milad Shokouhi,et al.  Using Clicks as Implicit Judgments: Expectations Versus Observations , 2008, ECIR.

[63]  Gerard Salton,et al.  Improving retrieval performance by relevance feedback , 1997, J. Am. Soc. Inf. Sci..

[64]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..

[65]  Thorsten Joachims,et al.  A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization , 1997, ICML.

[66]  Robert E. Schapire,et al.  Non-Stochastic Bandit Slate Problems , 2010, NIPS.

[67]  Nick Craswell,et al.  An experimental comparison of click position-bias models , 2008, WSDM '08.

[68]  Robert D. Kleinberg,et al.  Regret bounds for sleeping experts and bandits , 2010, Machine Learning.

[69]  Ben Carterette,et al.  Overview of the TREC 2013 Session Track , 2013, TREC.

[70]  Jaana Kekäläinen,et al.  Cumulated gain-based evaluation of IR techniques , 2002, TOIS.

[71]  Susan T. Dumais,et al.  Understanding temporal query dynamics , 2011, WSDM '11.

[72]  Daqing He,et al.  Searching, browsing, and clicking in a search session: changes in user behavior by task and over time , 2014, SIGIR.

[73]  Kuansan Wang,et al.  Inferring search behaviors using partially observable markov model with duration (POMD) , 2011, WSDM '11.

[74]  Amanda Spink,et al.  Patterns of query reformulation during Web searching , 2009, J. Assoc. Inf. Sci. Technol..

[75]  Gary Marchionini,et al.  Exploratory search , 2006, Commun. ACM.

[76]  Panagiotis G. Ipeirotis,et al.  Show me the money!: deriving the pricing power of product features by mining consumer reviews , 2007, KDD '07.

[77]  Burr Settles,et al.  Active Learning Literature Survey , 2009 .

[78]  Lydia B. Chilton,et al.  Addressing people's information needs directly in a web search result page , 2011, WWW.

[79]  Harry Markowitz A Simplex Method for the Portfolio Selection Problem , 1957 .

[80]  Tie-Yan Liu,et al.  Learning to Rank for Information Retrieval , 2011 .

[81]  Olivier Chapelle,et al.  Expected reciprocal rank for graded relevance , 2009, CIKM.

[82]  Charles L. A. Clarke,et al.  The influence of caption features on clickthrough patterns in web search , 2007, SIGIR.

[83]  Grace Hui Yang,et al.  Utilizing query change for session search , 2013, SIGIR.

[84]  Omar Besbes,et al.  Stochastic Multi-Armed-Bandit Problem with Non-stationary Rewards , 2014, NIPS.

[85]  Thorsten Joachims,et al.  Online Learning with Preference Feedback , 2011, ArXiv.

[86]  Thorsten Joachims,et al.  Interactively optimizing information retrieval systems as a dueling bandits problem , 2009, ICML '09.

[87]  Ryen W. White,et al.  Evaluating implicit feedback models using searcher simulations , 2005, TOIS.

[88]  Gilad Mishne,et al.  Towards recency ranking in web search , 2010, WSDM '10.

[89]  Ryen W. White,et al.  WWW 2007 / Track: Browsers and User Interfaces Session: Personalization Investigating Behavioral Variability in Web Search , 2022 .

[90]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[91]  Susan T. Dumais,et al.  The web changes everything: understanding the dynamics of web content , 2009, WSDM '09.

[92]  Jun Wang,et al.  Sequential selection of correlated ads by POMDPs , 2012, CIKM.

[93]  Milad Shokouhi,et al.  Query Suggestion and Data Fusion in Contextual Disambiguation , 2015, WWW.

[94]  Minyi Guo,et al.  Location-Aware Information Retrieval for Mobile Computing , 2004, EUC.

[95]  Zhihua Zhang,et al.  Learning click models via probit bayesian inference , 2010, CIKM.

[96]  Filip Radlinski,et al.  Evaluating the accuracy of implicit feedback from clicks and query reformulations in Web search , 2007, TOIS.

[97]  Leif Azzopardi,et al.  Modelling interaction with economic models of search , 2014, SIGIR.

[98]  Wei Chu,et al.  An Unbiased, Data-Driven, Offline Evaluation Method of Contextual Bandit Algorithms , 2010, ArXiv.

[99]  Edward J. Sondik,et al.  The Optimal Control of Partially Observable Markov Processes over the Infinite Horizon: Discounted Costs , 1978, Oper. Res..

[100]  Jun Wang,et al.  Interactive exploratory search for multi page search results , 2013, WWW.

[101]  Grace Hui Yang,et al.  Designing States, Actions, and Rewards for Using POMDP in Session Search , 2015, ECIR.

[102]  O. O’Reilly Engineering Dynamics: A Primer , 2000 .

[103]  W. PEDDIE,et al.  The Scientific Papers of James Clerk Maxwell , 1927, Nature.

[104]  Olivier Buffet,et al.  Markov decision processes in artificial intelligence : MDPs, beyond MDPs and applications , 2010 .

[105]  Ryen W. White,et al.  Exploratory Search: Beyond the Query-Response Paradigm , 2009, Exploratory Search: Beyond the Query-Response Paradigm.

[106]  Ram Akella,et al.  Active relevance feedback for difficult queries , 2008, CIKM '08.

[107]  Wei-Ying Ma,et al.  Optimizing web search using web click-through data , 2004, CIKM '04.

[108]  Ben Carterette,et al.  Overview of the TREC 2011 Session Track , 2011, TREC.

[109]  Lois M. L. Delcambre,et al.  Discounted Cumulated Gain Based Evaluation of Multiple-Query IR Sessions , 2008, ECIR.

[110]  M. Bartlett,et al.  Markov Processes and Potential Theory , 1972, The Mathematical Gazette.

[111]  Jure Leskovec,et al.  Meme-tracking and the dynamics of the news cycle , 2009, KDD.

[112]  Jude W. Shavlik,et al.  Learning users' interests by unobtrusively observing their normal behavior , 2000, IUI '00.

[113]  C. J. van Rijsbergen,et al.  The Quantum Probability Ranking Principle for Information Retrieval , 2009, ICTIR.

[114]  Hugo Zaragoza,et al.  The Probabilistic Relevance Framework: BM25 and Beyond , 2009, Found. Trends Inf. Retr..

[115]  Marc-Allen Cartright,et al.  Intentions and attention in exploratory health search , 2011, SIGIR.

[116]  R. Sternberg,et al.  Handbook of Intelligence , 2000 .

[117]  Jeff A. Bilmes,et al.  A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models , 1998 .

[118]  Peretz Shoval,et al.  Information Filtering: Overview of Issues, Research and Systems , 2001, User Modeling and User-Adapted Interaction.

[119]  Jure Leskovec,et al.  Patterns of temporal variation in online media , 2011, WSDM '11.

[120]  Jaime Teevan,et al.  Understanding how people interact with web search results that change in real-time using implicit feedback , 2013, CIKM.

[121]  ChengXiang Zhai,et al.  Implicit user modeling for personalized search , 2005, CIKM '05.

[122]  Ben Carterette,et al.  Evaluating Search Engines by Modeling the Relationship Between Relevance and Clicks , 2007, NIPS.

[123]  Jun Wang,et al.  Dynamic Information Retrieval Modeling , 2015, Synthesis Lectures on Information Concepts, Retrieval, and Services.

[124]  Mounia Lalmas,et al.  A survey on the use of relevance feedback for information access systems , 2003, The Knowledge Engineering Review.

[125]  Yi Zhang,et al.  Interactive retrieval based on faceted feedback , 2010, SIGIR '10.

[126]  Jun Wang,et al.  A term-based methodology for query reformulation understanding , 2015, Information Retrieval Journal.

[127]  Yixin Diao,et al.  Feedback Control of Computing Systems , 2004 .

[128]  Peter Auer,et al.  Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.

[129]  Allen R. Stubberud,et al.  Feedback And Control Systems , 2007 .

[130]  Jun Wang,et al.  Top-k Retrieval Using Facility Location Analysis , 2012, ECIR.

[131]  Filip Radlinski,et al.  Mortal Multi-Armed Bandits , 2008, NIPS.

[132]  J. Pearl,et al.  Causal inference in statistics , 2016 .

[133]  David R. Karger,et al.  Less is More Probabilistic Models for Retrieving Fewer Relevant Documents , 2006 .

[134]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[135]  Chao Liu,et al.  Click chain model in web search , 2009, WWW '09.

[136]  Kevyn Collins-Thompson,et al.  Robust model estimation methods for information retrieval , 2008 .

[137]  Amanda Spink,et al.  Multitasking during Web search sessions , 2006, Inf. Process. Manag..

[138]  Enhong Chen,et al.  Context-aware query suggestion by mining click-through and session data , 2008, KDD.

[139]  Eugene Agichtein,et al.  Find it if you can: a game for modeling different types of web search success using interaction data , 2011, SIGIR.

[140]  Ben Carterette,et al.  Evaluating multi-query sessions , 2011, SIGIR.

[141]  Ben Carterette,et al.  Overview of the TREC 2012 Session Track , 2012, TREC.

[142]  Sreenivas Gollapudi,et al.  Diversifying search results , 2009, WSDM '09.

[143]  Xiaolong Li,et al.  Inferring search behaviors using partially observable Markov (POM) model , 2010, WSDM '10.

[144]  Richard S. Sutton,et al.  Learning to predict by the methods of temporal differences , 1988, Machine Learning.

[145]  Andrew Turpin,et al.  Do batch and user evaluations give the same results? , 2000, SIGIR '00.

[146]  Jun Wang,et al.  Portfolio theory of information retrieval , 2009, SIGIR.

[147]  Zhenyu Liu,et al.  Automatic identification of user goals in Web search , 2005, WWW '05.

[148]  Ryen W. White,et al.  A study of factors affecting the utility of implicit relevance feedback , 2005, SIGIR '05.

[149]  S. Robertson The probability ranking principle in IR , 1997 .

[150]  Ellen M. Voorhees The Cluster Hypothesis Revisited , 1985, SIGIR.

[151]  Tie-Yan Liu,et al.  Learning to rank: from pairwise approach to listwise approach , 2007, ICML '07.

[152]  Charles L. A. Clarke,et al.  Time-based calibration of effectiveness measures , 2012, SIGIR '12.

[153]  Katja Hofmann,et al.  Balancing Exploration and Exploitation in Learning to Rank Online , 2011, ECIR.

[154]  M. Littman The Witness Algorithm: Solving Partially Observable Markov Decision Processes , 1994 .

[155]  Volnei Pedroni Digital Electronics and Design with VHDL , 2008 .

[156]  Thorsten Joachims,et al.  Accurately Interpreting Clickthrough Data as Implicit Feedback , 2017 .

[157]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[158]  Nicola Ferro,et al.  Injecting user models and time into precision via Markov chains , 2014, SIGIR.

[159]  Thorsten Joachims,et al.  The K-armed Dueling Bandits Problem , 2012, COLT.

[160]  Jason Baldridge,et al.  Part-of-Speech Tagging for Middle English through Alignment and Projection of Parallel Diachronic Texts , 2007, EMNLP-CoNLL.

[161]  Paul N. Bennett,et al.  Robust ranking models via risk-sensitive optimization , 2012, SIGIR '12.

[162]  Yong Yu,et al.  Identification of ambiguous queries in web search , 2009, Inf. Process. Manag..

[163]  Ricardo A. Baeza-Yates,et al.  Query Recommendation Using Query Logs in Search Engines , 2004, EDBT Workshops.

[164]  H. Robbins Some aspects of the sequential design of experiments , 1952 .

[165]  Yoichi Shinoda,et al.  Information filtering based on user behavior analysis and best match text retrieval , 1994, SIGIR '94.