Scheduling: Bibliography & Review

Scheduling is defined by Baker as, “the allocation of resources over time to perform a collection of tasks”. The term facilities is often used instead of resources and the tasks to be performed may involve a variety of different operations.

[1]  Nabil R. Adam,et al.  Note---A Comparison of Capacity Planning Techniques in a Job Shop Control System , 1977 .

[2]  Alan S. Manne,et al.  On the Job-Shop Scheduling Problem , 1960 .

[3]  Ergin Uskup,et al.  A Branch-and-Bound Algorithm for Two-Stage Production-Sequencing Problems , 1975, Oper. Res..

[4]  Harvey M. Salkin,et al.  The knapsack problem: A survey , 1975 .

[5]  Victor B. Godin,et al.  Interactive Scheduling: Historical Survey and State of the Art , 1978 .

[6]  Marshall L. Fisher,et al.  Optimal Solution of Scheduling Problems Using Lagrange Multipliers: Part I , 1973, Oper. Res..

[7]  Salah E. Elmaghraby,et al.  The machine sequencing problem – review and extensions , 1968 .

[8]  P. Mellor,et al.  A Review of Job Shop Scheduling , 1966 .

[9]  Jan Karel Lenstra,et al.  Complexity of machine scheduling problems , 1975 .

[10]  James R. Jackson,et al.  An extension of Johnson's results on job IDT scheduling , 1956 .

[11]  R. A. Dudek,et al.  A Heuristic Algorithm for the n Job, m Machine Sequencing Problem , 1970 .

[12]  Nicos Christofides,et al.  Distribution management : mathematical modelling and practical analysis , 1971 .

[13]  Harold H. Greenberg,et al.  A Branch-Bound Solution to the General Scheduling Problem , 1968, Oper. Res..

[14]  Ravi Sethi,et al.  The Complexity of Flowshop and Jobshop Scheduling , 1976, Math. Oper. Res..

[15]  R. G. Parker,et al.  A Precedence Graph Algorithm for the Shop Scheduling Problem , 1971 .

[16]  W. Townsend Note---Sequencing n Jobs on m Machines to Minimise Maximum Tardiness: A Branch-and-Bound Solution , 1977 .

[17]  Pierre N. Robillard,et al.  Scheduling with earliest start and due date constraints , 1971 .

[18]  Jeffrey D. Ullman,et al.  Worst-Case Performance Bounds for Simple One-Dimensional Packing Algorithms , 1974, SIAM J. Comput..

[19]  Teofilo F. Gonzalez,et al.  Flowshop and Jobshop Schedules: Complexity and Approximation , 1978, Oper. Res..

[20]  Marshall L. Fisher,et al.  A dual algorithm for the one-machine scheduling problem , 1976, Math. Program..

[21]  N. A. J. Hastings,et al.  A New Bound for Machine Scheduling , 1976 .

[22]  Nicos Christofides Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem , 1976, Operations Research Forum.

[23]  M. Florian,et al.  An implicit enumeration algorithm for complex scheduling problems , 1975 .

[24]  Salah E. Elmaghraby,et al.  Symposium on the Theory of Scheduling and Its Applications , 1973 .

[25]  Ronald L. Graham,et al.  Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.

[26]  Samuel Eilon,et al.  Experiments with the SIX rule in job-shop scheduling , 1975 .

[27]  T. Ibaraki ON THE COMPUTATIONAL EFFICIENCY OF BRANCH-AND-BOUND ALGORITHMS , 1977 .

[28]  John M. Charlton,et al.  A Generalized Machine-Scheduling Algorithm , 1970 .

[29]  Ravi Sethi,et al.  On the Complexity of Mean Flow Time Scheduling , 1977, Math. Oper. Res..

[30]  David G. Dannenbring,et al.  An Evaluation of Flow Shop Sequencing Heuristics , 1977 .

[31]  S. M. Johnson,et al.  Optimal two- and three-stage production schedules with setup times included , 1954 .

[32]  Albert Schild,et al.  On Scheduling Tasks with Associated Linear Loss Functions , 1961 .

[33]  Pierre N. Robillard,et al.  Scheduling with earliest start and due date constraints on multiple machines , 1975 .

[34]  Ronald L. Graham,et al.  The Combinatorial Mathematics of Scheduling , 1978 .

[35]  William S. Gere Heuristics in Job Shop Scheduling , 1966 .

[36]  E. Lawler Sequencing Jobs to Minimize Total Weighted Completion Time Subject to Precedence Constraints , 1978 .

[37]  J. M. Moore An n Job, One Machine Sequencing Algorithm for Minimizing the Number of Late Jobs , 1968 .

[38]  Jeffrey B. Sidney,et al.  Decomposition Algorithms for Single-Machine Sequencing with Precedence Relations and Deferral Costs , 1975, Oper. Res..

[39]  Said Ashour,et al.  INVESTIGATION OF VARIOUS BOUNDING PROCEDURES FOR PRODUCTION SCHEDULING PROBLEMS , 1968 .

[40]  Z. A. Lomnicki A “Branch-and-Bound” Algorithm for the Exact Solution of the Three-Machine Scheduling Problem , 1965 .

[41]  G. B. McMahon,et al.  Flow-Shop Scheduling with the Branch-and-Bound Method , 1967, Oper. Res..

[42]  C. T. Baker,et al.  Simulation of a Simplified Job Shop , 1960 .

[43]  C. C. New Job Shop Scheduling: Is Manual Application of Dispatching Rules Feasible? , 1975 .

[44]  Bruce A. McCarl,et al.  An investigation of a cost-based rule for job-shop scheduling , 1973 .

[45]  C. Papadimitriou,et al.  The Efficiency of Algorithms. , 1978 .

[46]  Nuffield Mathematics,et al.  Computation and structure , 1967 .

[47]  Kenneth R. Baker,et al.  Sequencing with due-dates and early start times to minimize maximum tardiness , 1974 .

[48]  Jeffrey B. Sidney,et al.  Optimal Single-Machine Scheduling with Earliness and Tardiness Penalties , 1977, Oper. Res..

[49]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[50]  A. M. Geoffrion Duality in Nonlinear Programming: A Simplified Applications-Oriented Development , 1971 .

[51]  Kenneth Steiglitz,et al.  Exact, Approximate, and Guaranteed Accuracy Algorithms for the Flow-Shop Problem n/2/F/ F , 1975, JACM.

[52]  Toshihide Ibaraki,et al.  Computational Efficiency of Approximate Branch-and-Bound Algorithms , 1976, Math. Oper. Res..

[53]  Douglas A. Elvers,et al.  The Sensitivity of the Relative Effectiveness of Job Shop Dispatching Rules with Respect to Various Arrival Distributions , 1974 .

[54]  Ashour Said A Branch-and-Bound Algorithm for Flow Shop Scheduling Problems , 1970 .

[55]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[56]  John M. Charlton,et al.  A Method of Solution for General Machine-Scheduling Problems , 1970, Oper. Res..

[57]  Jan Karel Lenstra,et al.  Sequencing by enumerative methods , 1977 .

[58]  R. Gomory,et al.  Sequencing a One State-Variable Machine: A Solvable Case of the Traveling Salesman Problem , 1964 .

[59]  J. R. King,et al.  The theory-practice gap in job-shop scheduling , 1976 .

[60]  E. Lawler A “Pseudopolynomial” Algorithm for Sequencing Jobs to Minimize Total Tardiness , 1977 .

[61]  Irwin J. Fredman,et al.  Scheduling Tasks with Deadlines and Non-Linear Loss Functions , 1962 .

[62]  Michael Florian,et al.  An Implicit Enumeration Algorithm for the Machine Sequencing Problem , 1971 .

[63]  Ludo Gelders,et al.  Coordinating Aggregate and Detailed Scheduling in the One-Machine Job Shop: II - Computation and Structure , 1975, Oper. Res..

[64]  Richard M. Karp,et al.  On the Computational Complexity of Combinatorial Problems , 1975, Networks.

[65]  Said Ashour,et al.  A GASP simulation study of job-shop scheduling , 1972 .

[66]  Samuel Eilon,et al.  Studies in a Simulated Job Shop , 1975 .

[67]  M. I. Dessouky,et al.  The One-Machine Sequencing Problem with Early Starts and Due Dates , 1972 .

[68]  A. M. Geoffrion Lagrangean Relaxation and Its Uses in Integer Programming , 1972 .

[69]  G. Thompson,et al.  Algorithms for Solving Production-Scheduling Problems , 1960 .

[70]  Richard M. Karp,et al.  The traveling-salesman problem and minimum spanning trees: Part II , 1971, Math. Program..

[71]  W. Townsend Minimising the Maximum Penalty in the Two-Machine Flow Shop , 1977 .

[72]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[73]  Eugene L. Lawler On Scheduling Problems with Deferral Costs , 1964 .

[74]  Samuel Eilon,et al.  A MODIFIED SI RULE IN JOB SHOP SCHEDULING , 1968 .

[75]  Harvey M. Wagner,et al.  An integer linear‐programming model for machine scheduling , 1959 .

[76]  Linus Schrage,et al.  Solving Resource-Constrained Network Problems by Implicit Enumeration - Nonpreemptive Case , 1970, Oper. Res..

[77]  L. Gelders,et al.  Coordinating Aggregate and Detailed Scheduling Decisions in the One-Machine Job Shop: Part I. Theory , 2015, Oper. Res..

[78]  Jatinder N. D. Gupta,et al.  Heuristic Algorithms for Multistage Flowshop Scheduling Problem , 1972 .

[79]  William L. Maxwell,et al.  Network Dispatching by the Shortest-Operation Discipline , 1962 .

[80]  W. Townsend Minimising the Maximum Penalty in the m -Machine Sequencing Problem , 1977 .

[81]  T. E. Moore,et al.  An Implicit Enumeration Algorithm for the Nonpreemptive Shop Scheduling Problem , 1974 .

[82]  L. G. Mitten Branch-and-Bound Methods: General Formulation and Properties , 1970, Oper. Res..

[83]  Toshihide Ibaraki,et al.  A Solvable Case of the One-Machine Scheduling Problem with Ready and Due Times , 1978, Oper. Res..

[84]  B. J. Lageweg,et al.  Minimizing Total Costs in One-Machine Scheduling , 1975, Oper. Res..

[85]  James R. Jackson,et al.  Simulation research on job shop production , 1957 .

[86]  W. A. Horn Single-Machine Job Sequencing with Treelike Precedence Ordering and Linear Delay Penalties , 1972 .

[87]  C. V. Ramamoorthy,et al.  On the Flow-Shop Sequencing Problem with No Wait in Process † , 1972 .

[88]  Wlodzimierz Szwarc,et al.  SOLUTION OF THE AKERS-FRIEDMAN SCHEDULING PROBLEM , 1960 .

[89]  Richard M. Karp,et al.  The Traveling-Salesman Problem and Minimum Spanning Trees , 1970, Oper. Res..

[90]  Teofilo F. Gonzalez,et al.  Preemptive Scheduling of Uniform Processor Systems , 1978, JACM.

[91]  O. Mangasarian Duality in nonlinear programming , 1962 .

[92]  Eugene L. Lawler,et al.  Optimal Sequencing of a Single Machine Subject to Precedence Constraints , 1973 .

[93]  Shen Lin Computer solutions of the traveling salesman problem , 1965 .

[94]  D. A. Wismer,et al.  Solution of the Flowshop-Scheduling Problem with No Intermediate Queues , 1972, Oper. Res..

[95]  R. H. Hollier A Simulation Study of Sequencing in Batch Production , 1968 .

[96]  Linus Schrage,et al.  Finding an Optimal Sequence by Dynamic Programming: An Extension to Precedence-Related Tasks , 1978, Oper. Res..

[97]  Augustine O. Esogbue,et al.  Two machine flow shop scheduling problems with sequence dependent setup times: A dynamic programming approach , 1974 .

[98]  Maurice Bonney,et al.  Solutions to the Constrained Flowshop Sequencing Problem , 1976 .

[99]  E. L. Lawler,et al.  Branch-and-Bound Methods: A Survey , 1966, Oper. Res..

[100]  Graham McMahon,et al.  On Scheduling with Ready Times and Due Dates to Minimize Maximum Lateness , 1975, Oper. Res..

[101]  E. Ignall,et al.  Application of the Branch and Bound Technique to Some Flow-Shop Scheduling Problems , 1965 .

[102]  Sartaj Sahni,et al.  Algorithms for Scheduling Independent Tasks , 1976, J. ACM.

[103]  James E. Day,et al.  Review of sequencing research , 1970 .

[104]  R. G. Parker,et al.  Computational Experience with a Cost-based Algorithm for the Shop Scheduling Problem , 1975 .

[105]  J. M. Moore,et al.  A Functional Equation and its Application to Resource Allocation and Sequencing Problems , 1969 .

[106]  Egon Balas,et al.  Machine Sequencing Via Disjunctive Graphs: An Implicit Enumeration Algorithm , 1969, Oper. Res..

[107]  R. M. Hodgson,et al.  JOB SHOPS SCHEDULING WITH DUE DATES , 1967 .

[108]  Ronald L. Graham,et al.  Bounds for certain multiprocessing anomalies , 1966 .

[109]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[110]  Wayne E. Smith Various optimizers for single‐stage production , 1956 .

[111]  E. H. Bowman THE SCHEDULE-SEQUENCING PROBLEM* , 1959 .

[112]  D. S. Palmer Sequencing Jobs Through a Multi-Stage Process in the Minimum Total Time—A Quick Method of Obtaining a Near Optimum , 1965 .

[113]  T. C. Hu Parallel Sequencing and Assembly Line Problems , 1961 .

[114]  Michael Florian,et al.  A Direct Search Method to Locate Negative Cycles in a Graph , 1971 .

[115]  Philip M. Wolfe,et al.  Multiproject Scheduling with Limited Resources: A Zero-One Programming Approach , 1969 .

[116]  Richard M. Karp,et al.  Probabilistic Analysis of Partitioning Algorithms for the Traveling-Salesman Problem in the Plane , 1977, Math. Oper. Res..

[117]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[118]  John L. Colley,et al.  Load Forecasting, Priority Sequencing, and Simulation in a Job Shop Control System , 1966 .

[119]  Jr King Scheduling and the problem of computational complexity , 1979 .

[120]  A. N. Elshafei,et al.  Note--On the Use of Fictitious Bounds in Tree Search Algorithms , 1977 .

[121]  Kenneth R. Baker,et al.  An experimental comparison of solution algorithms for the single‐machine tardiness problem , 1974 .