Learning Image Attributes using the Indian Buffet Process

In the domain of object recognition and image classification, a recent trend is to use image properties or attributes to represent the images. Most of the proposed models in the past require that the number of attributes and attribute semantics be specified in advance. In this paper, we propose a generative model for image attributes that combine attribute-based vision models and feature-based nonparamatric models. We learn the model using Gibbs sampling. Qualitatively, we demonstrate the learned attributes of images in three categories. Quantitatively, we show that our model outperforms simple baseline methods in image retrieval and transfer learning tasks.

[1]  N. Hjort Nonparametric Bayes Estimators Based on Beta Processes in Models for Life History Data , 1990 .

[2]  Shimon Ullman,et al.  Class-Specific, Top-Down Segmentation , 2002, ECCV.

[3]  Antonio Torralba,et al.  Sharing features: efficient boosting procedures for multiclass object detection , 2004, CVPR 2004.

[4]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[5]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[6]  Antonio Torralba,et al.  Describing Visual Scenes Using Transformed Objects and Parts , 2008, International Journal of Computer Vision.

[7]  Andrew Zisserman,et al.  Learning Visual Attributes , 2007, NIPS.

[8]  Michael I. Jordan,et al.  Hierarchical Beta Processes and the Indian Buffet Process , 2007, AISTATS.

[9]  Zoubin Ghahramani,et al.  Infinite Sparse Factor Analysis and Infinite Independent Components Analysis , 2007, ICA.

[10]  T. Griffiths,et al.  Bayesian nonparametric latent feature models , 2007 .

[11]  Shree K. Nayar,et al.  FaceTracer: A Search Engine for Large Collections of Images with Faces , 2008, ECCV.

[12]  Christoph H. Lampert,et al.  Learning to detect unseen object classes by between-class attribute transfer , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Rogério Schmidt Feris,et al.  Attribute-based people search in surveillance environments , 2009, 2009 Workshop on Applications of Computer Vision (WACV).

[14]  Katja Markert,et al.  Learning Models for Object Recognition from Natural Language Descriptions , 2009, BMVC.

[15]  Lawrence Carin,et al.  Nonparametric factor analysis with beta process priors , 2009, ICML '09.

[16]  Gang Wang,et al.  Joint learning of visual attributes, object classes and visual saliency , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[17]  Ali Farhadi,et al.  Describing objects by their attributes , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Shree K. Nayar,et al.  Attribute and simile classifiers for face verification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[19]  Bernt Schiele,et al.  What helps where – and why? Semantic relatedness for knowledge transfer , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Ali Farhadi,et al.  Attribute-centric recognition for cross-category generalization , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Xiaodong Yu,et al.  Attribute-Based Transfer Learning for Object Categorization with Zero/One Training Example , 2010, ECCV.

[22]  Thomas L. Griffiths,et al.  Learning invariant features using the Transformed Indian Buffet Process , 2010, NIPS.

[23]  Alexander C. Berg,et al.  Automatic Attribute Discovery and Characterization from Noisy Web Data , 2010, ECCV.

[24]  Zoubin Ghahramani,et al.  Nonparametric Bayesian Sparse Factor Models with application to Gene Expression modelling , 2010, The Annals of Applied Statistics.

[25]  Kristen Grauman,et al.  Relative attributes , 2011, 2011 International Conference on Computer Vision.

[26]  Sharath Pankanti,et al.  Attribute-based vehicle search in crowded surveillance videos , 2011, ICMR.

[27]  Silvio Savarese,et al.  Recognizing human actions by attributes , 2011, CVPR 2011.