Flexible diodes for radio frequency (RF) electronics: a materials perspective

Over the last decade, there has been increasing interest in transferring the research advances in radiofrequency (RF) rectifiers, the quintessential element of the chip in the RF identification (RFID) tags, obtained on rigid substrates onto plastic (flexible) substrates. The growing demand for flexible RFID tags, wireless communications applications and wireless energy harvesting systems that can be produced at a low-cost is a key driver for this technology push. In this topical review, we summarise recent progress and status of flexible RF diodes and rectifying circuits, with specific focus on materials and device processing aspects. To this end, different families of materials (e.g. flexible silicon, metal oxides, organic and carbon nanomaterials), manufacturing processes (e.g. vacuum and solution processing) and device architectures (diodes and transistors) are compared. Although emphasis is placed on performance, functionality, mechanical flexibility and operating stability, the various bottlenecks associated with each technology are also addressed. Finally, we present our outlook on the commercialisation potential and on the positioning of each material class in the RF electronics landscape based on the findings summarised herein. It is beyond doubt that the field of flexible high and ultra-high frequency rectifiers and electronics as a whole will continue to be an active area of research over the coming years.

[1]  Barbara Stadlober,et al.  Self‐Aligned Megahertz Organic Transistors Solution‐Processed on Plastic , 2015 .

[2]  M. Fuhrer,et al.  Microwave rectification by a carbon nanotube Schottky diode , 2008, 0805.1899.

[3]  Ray T. Chen,et al.  All ink-jet-printed carbon nanotube thin-film transistor on a polyimide substrate with an ultrahigh operating frequency of over 5 GHz , 2008 .

[4]  A. Sedra Microelectronic circuits , 1982 .

[5]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[6]  John E Anthony,et al.  The larger acenes: versatile organic semiconductors. , 2008, Angewandte Chemie.

[7]  Hamid Jabbar,et al.  RF energy harvesting system and circuits for charging of mobile devices , 2010, IEEE Transactions on Consumer Electronics.

[8]  T. Anthopoulos,et al.  Observation of Unusual, Highly Conductive Grain Boundaries in High‐Mobility Phase Separated Organic Semiconducting Blend Films Probed by Lateral‐Transport Conductive‐AFM , 2013, Advanced materials.

[9]  JianJang Huang,et al.  Demonstration of radio-frequency response of amorphous IGZO thin film transistors on the glass substrate , 2015 .

[10]  Robert C. Haddon,et al.  C60 thin film transistors , 1995 .

[11]  Barbara Stadlober,et al.  Fabrication of n‐ and p‐Type Organic Thin Film Transistors with Minimized Gate Overlaps by Self‐Aligned Nanoimprinting , 2010, Advanced materials.

[12]  T. Jackson,et al.  Pentacene TFT with improved linear region characteristics using chemically modified source and drain electrodes , 2001, IEEE Electron Device Letters.

[13]  Y. Arakawa,et al.  Threshold voltage control of bottom-contact n-channel organic thin-film transistors using modified drain/source electrodes , 2009 .

[14]  Kai Chang,et al.  A high conversion efficiency 5.8 GHz rectenna , 1997, 1997 IEEE MTT-S International Microwave Symposium Digest.

[15]  Yung-Hui Yeh,et al.  High-frequency polymer diode rectifiers for flexible wireless power-transmission sheets , 2011 .

[16]  J. Rogers,et al.  Recent Progress in Obtaining Semiconducting Single‐Walled Carbon Nanotubes for Transistor Applications , 2015, Advanced materials.

[17]  Zhenqiang Ma,et al.  High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers , 2006 .

[18]  Mayumi Uno,et al.  Flexible Three‐Dimensional Organic Field‐Effect Transistors Fabricated by an Imprinting Technique , 2012, Advanced materials.

[19]  Yong‐Young Noh,et al.  Variations in the Electric Characteristics of an Organic Schottky Diode with the P3HT Thickness , 2010 .

[20]  M. Kang,et al.  Split‐Gate Organic Field‐Effect Transistors for High‐Speed Operation , 2014, Advanced materials.

[21]  M. Dragoman,et al.  Microwave propagation in graphene , 2009 .

[22]  A. Centeno,et al.  Mechanically robust 39 GHz cut-off frequency graphene field effect transistors on flexible substrates. , 2016, Nanoscale.

[23]  J. Rogers,et al.  High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. , 2007, Nature nanotechnology.

[24]  H. Ozaki,et al.  20-µW operation of an a-IGZO TFT-based RFID chip using purely NMOS “active” load logic gates with ultra-low-consumption power , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[25]  J. Tascón,et al.  Graphene oxide dispersions in organic solvents. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[26]  Charles M Lieber,et al.  Fundamental electronic properties and applications of single-walled carbon nanotubes. , 2002, Accounts of chemical research.

[27]  E. Kymakis,et al.  High Electron Mobility Thin‐Film Transistors Based on Solution‐Processed Semiconducting Metal Oxide Heterojunctions and Quasi‐Superlattices , 2015, Advanced science.

[28]  Neha Arora,et al.  Arc discharge synthesis of carbon nanotubes: Comprehensive review , 2014 .

[29]  T. Ma,et al.  High‐quality transparent conductive indium oxide films prepared by thermal evaporation , 1980 .

[30]  M. Caironi,et al.  Organic and Hybrid Materials for Flexible Electronics , 2013, Advanced materials.

[31]  Chung‐Chih Wu,et al.  Room-temperature-processed flexible n-InGaZnO/p-Cu2O heterojunction diodes and high-frequency diode rectifiers , 2014 .

[32]  Khairudin Mohamed,et al.  A review of roll-to-roll nanoimprint lithography , 2014, Nanoscale Research Letters.

[33]  Wim Dehaene,et al.  Optimized circuit design for flexible 8-bit RFID transponders with active layer of ink-jet printed small molecule semiconductors , 2013 .

[34]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[35]  John A Rogers,et al.  Radio frequency analog electronics based on carbon nanotube transistors , 2008, Proceedings of the National Academy of Sciences.

[36]  X. Crispin,et al.  Flexible Lamination-Fabricated Ultra-High Frequency Diodes Based on Self-Supporting Semiconducting Composite Film of Silicon Micro-Particles and Nano-Fibrillated Cellulose , 2016, Scientific Reports.

[37]  N. Goldsman,et al.  Electron transport and full-band electron-phonon interactions in graphene , 2008 .

[38]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[39]  Christoph Gadermaier,et al.  Production of Highly Monolayer Enriched Dispersions of Liquid-Exfoliated Nanosheets by Liquid Cascade Centrifugation. , 2016, ACS nano.

[40]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[41]  Michiel Steyaert,et al.  An organic integrated capacitive DC-DC up-converter , 2010, 2010 Proceedings of ESSCIRC.

[42]  Jianfeng Wang,et al.  Applications, challenges, and prospective in emerging body area networking technologies , 2010, IEEE Wireless Communications.

[43]  Donal D. C. Bradley,et al.  Solution-processed organic transistors based on semiconducting blends , 2010 .

[44]  C. K. Chiang,et al.  Electrical Conductivity in Doped Polyacetylene. , 1977 .

[45]  J. Coleman,et al.  High-yield production of graphene by liquid-phase exfoliation of graphite. , 2008, Nature nanotechnology.

[46]  Q. Fu,et al.  Schottky diodes from asymmetric metal-nanotube contacts , 2006 .

[47]  Seung Jin Heo,et al.  Recent advances in low-temperature solution-processed oxide backplanes , 2013 .

[48]  E. Pop,et al.  Thermal conductance of an individual single-wall carbon nanotube above room temperature. , 2005, Nano letters.

[49]  A. Sharma,et al.  Spatial atmospheric atomic layer deposition of InxGayZnzO for thin film transistors. , 2015, ACS applied materials & interfaces.

[50]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[51]  Marcel Mayor,et al.  Electronic transport through single conjugated molecules , 2002 .

[52]  Michael S. Arnold,et al.  Radio Frequency Transistors Using Aligned Semiconducting Carbon Nanotubes with Current-Gain Cutoff Frequency and Maximum Oscillation Frequency Simultaneously Greater than 70 GHz. , 2016, ACS nano.

[53]  Weidong Zhou,et al.  12-GHz thin-film transistors on transferrable silicon nanomembranes for high-performance flexible electronics. , 2010, Small.

[54]  X. Duan,et al.  High-frequency self-aligned graphene transistors with transferred gate stacks , 2012, Proceedings of the National Academy of Sciences.

[55]  G. Fiori,et al.  Velocity saturation in few-layer MoS2 transistor , 2013 .

[56]  Michael A. Haase,et al.  Pentacene-based radio-frequency identification circuitry , 2003 .

[57]  P. Chahal,et al.  Reduced graphene oxide based Schottky diode on flex substrate for microwave circuit applications , 2013, 2013 IEEE 63rd Electronic Components and Technology Conference.

[58]  A. Al-Warthan,et al.  Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation , 2012 .

[59]  B. Gnade,et al.  Full bridge circuit based on pentacene schottky diodes fabricated on plastic substrates , 2012 .

[60]  Barbara Stadlober,et al.  Self-aligned flexible organic thin-film transistors with gates patterned by nano-imprint lithography , 2015 .

[61]  Jongho Lee,et al.  Towards the Realization of Graphene Based Flexible Radio Frequency Receiver , 2015 .

[62]  Z. Cui,et al.  Printed Electronics: Materials, Technologies and Applications , 2016 .

[63]  Aram Amassian,et al.  High‐Performance ZnO Transistors Processed Via an Aqueous Carbon‐Free Metal Oxide Precursor Route at Temperatures Between 80–180 °C , 2013, Advanced materials.

[64]  Jang-Yeon Kwon,et al.  42.2: World's Largest (15‐inch) XGA AMLCD Panel Using IGZO Oxide TFT , 2008 .

[65]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[66]  Jongho Lee,et al.  25 GHz embedded-gate graphene transistors with high-k dielectrics on extremely flexible plastic sheets. , 2013, ACS Nano.

[67]  Jarrod Vaillancourt,et al.  Printable high-speed thin-film transistor on flexible substrate using carbon nanotube solution , 2007 .

[68]  G. Ghibaudo,et al.  Physics of the frequency response of rectifying organic Schottky diodes , 2014 .

[69]  Hao Wu,et al.  Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics , 2014, Nature Communications.

[70]  P. Heremans,et al.  Low-voltage gallium–indium–zinc–oxide thin film transistors based logic circuits on thin plastic foil: Building blocks for radio frequency identification application , 2011 .

[71]  Zhenqiang Ma,et al.  Fabrication and Characterization of Flexible Microwave Single-Crystal Germanium Nanomembrane Diodes on a Plastic Substrate , 2013, IEEE Electron Device Letters.

[72]  Kris Myny,et al.  16.3 Flexible thin-film NFC tags powered by commercial USB reader device at 13.56MHz , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[73]  Sanjay Krishna,et al.  Self-aligned, Extremely High Frequency Iii−v Metal-oxide- Semiconductor Field-effect Transistors on Rigid and Flexible Substrates , 2022 .

[74]  Z. Bao,et al.  A review of fabrication and applications of carbon nanotube film-based flexible electronics. , 2013, Nanoscale.

[75]  M. Nag,et al.  UHF IGZO Schottky diode , 2012, 2012 International Electron Devices Meeting.

[76]  R. Metzger Unimolecular and Supramolecular Electronics I: Chemistry and Physics Meet at Metal-Molecule Interfaces , 2012 .

[77]  Alasdair J. Campbell,et al.  Self-Aligned Organic Field-Effect Transistors on Plastic with Picofarad Overlap Capacitances and Megahertz Operating Frequencies , 2016 .

[78]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[79]  A. Green,et al.  Solution phase production of graphene with controlled thickness via density differentiation. , 2009, Nano letters.

[80]  P. Heremans,et al.  An integrated double half-wave organic Schottky diode rectifier on foil operating at 13.56 MHz , 2008 .

[81]  P. Blom,et al.  Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics , 2005, Nature materials.

[82]  A. Rao,et al.  Selective synthesis of subnanometer diameter semiconducting single-walled carbon nanotubes. , 2010, Journal of the American Chemical Society.

[83]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[84]  D. Akinwande,et al.  Black Phosphorus Flexible Thin Film Transistors at Gighertz Frequencies. , 2016, Nano letters.

[85]  Jinsoo Noh,et al.  Fully roll-to-roll gravure printed rectenna on plastic foils for wireless power transmission at 13.56 MHz , 2012, Nanotechnology.

[86]  Joachim N. Burghartz,et al.  Megahertz operation of flexible low-voltage organic thin-film transistors , 2013 .

[87]  Zhongfan Liu,et al.  Selective positioning and integration of individual single-walled carbon nanotubes. , 2009, Nano letters.

[88]  Xinge Yu,et al.  Metal oxides for optoelectronic applications. , 2016, Nature materials.

[89]  Mukul Kumar,et al.  Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. , 2010, Journal of nanoscience and nanotechnology.

[90]  Weidong Zhou,et al.  Fast Flexible Transistors with a Nanotrench Structure , 2016, Scientific Reports.

[91]  Karlheinz Bock,et al.  Air-stable, high current density, solution-processable, amorphous organic rectifying diodes (ORDs) for low-cost fabrication of flexible passive low frequency RFID tags , 2014, Microelectron. Reliab..

[92]  Gyoujin Cho,et al.  Fully Roll-to-Roll Gravure Printable Wireless (13.56 MHz) Sensor-Signage Tags for Smart Packaging , 2014, Scientific Reports.

[93]  Carolyn R. Ellinger,et al.  Selective Area Spatial Atomic Layer Deposition of ZnO, Al2O3, and Aluminum-Doped ZnO Using Poly(vinyl pyrrolidone) , 2014 .

[94]  P. Weiss,et al.  Position-Selected Molecular Ruler , 2004 .

[95]  Markus Böhm,et al.  Printable electronics for polymer RFID applications , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[96]  John A. Rogers,et al.  Gigahertz operation in flexible transistors on plastic substrates , 2006 .

[97]  Yong-Young Noh,et al.  Toward Printed Integrated Circuits based on Unipolar or Ambipolar Polymer Semiconductors , 2013, Advanced materials.

[98]  Donald Lupo,et al.  Organic and Printed Electronics : Fundamentals and Applications , 2016 .

[99]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[100]  Alexandra F. Paterson,et al.  Small Molecule/Polymer Blend Organic Transistors with Hole Mobility Exceeding 13 cm2 V−1 s−1 , 2016, Advanced materials.

[101]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[102]  K. Shepard,et al.  Flexible Graphene Field-Effect Transistors Encapsulated in Hexagonal Boron Nitride. , 2015, ACS nano.

[103]  T. Anthopoulos,et al.  Microstructural Control of Charge Transport in Organic Blend Thin‐Film Transistors , 2014 .

[104]  Mayumi Uno,et al.  High-speed organic transistors with three-dimensional organic channels and organic rectifiers based on them operating above 20 MHz , 2015 .

[105]  Stefano Bellucci,et al.  Carbon nanotubes: physics and applications , 2005 .

[106]  M. Dragoman,et al.  Millimeterwave Schottky diode on grapene monolayer via asymmetric metal contacts , 2012 .

[107]  Henri Happy,et al.  Gigahertz frequency flexible carbon nanotube transistors , 2007 .

[108]  Weidong Zhou,et al.  Fast Flexible Electronics Based on Printable Thin Mono-Crystalline Silicon , 2011 .

[109]  K. Kotani,et al.  High efficiency CMOS rectifier circuit with self-Vth-cancellation and power regulation functions for UHF RFIDs , 2007, 2007 IEEE Asian Solid-State Circuits Conference.

[110]  W. R. Salaneck,et al.  Electroluminescence in conjugated polymers , 1999, Nature.

[111]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[112]  Takao Someya,et al.  Contact resistance and megahertz operation of aggressively scaled organic transistors. , 2012, Small.

[113]  E. Dubois,et al.  150-GHz RF SOI-CMOS Technology in Ultrathin Regime on Organic Substrate , 2011, IEEE Electron Device Letters.

[114]  Joachim N. Burghartz,et al.  AC characterization of organic thin-film transistors with asymmetric gate-to-source and gate-to-drain overlaps , 2013 .

[115]  P. Chahal,et al.  Large-area low-cost substrate compatible CNT Schottky diode for THz detection , 2011, 2011 IEEE 61st Electronic Components and Technology Conference (ECTC).

[117]  B. J. Baliga,et al.  Silicon-carbide high-voltage (400 V) Schottky barrier diodes , 1992, IEEE Electron Device Letters.

[118]  C. Park,et al.  Investigation of plasma-doped fin structure and characterization of dopants by atom probe tomography , 2012 .

[119]  Zhenqiang Ma,et al.  Microwave thin-film transistors using Si nanomembranes on flexible polymer substrate , 2006 .

[120]  Kilwon Cho Interface Engineering for Organic Electronics , 2017 .

[121]  Iain McCulloch,et al.  Air‐Stable Solution‐Processed Hybrid Transistors with Hole and Electron Mobilities Exceeding 2 cm2 V−1 s−1 , 2010, Advanced materials.

[122]  J. Muth,et al.  Transparent, high mobility InGaZnO thin films deposited by PLD , 2008 .

[123]  Wim Dehaene,et al.  Plastic circuits and tags for 13.56 MHz radio-frequency communication , 2009 .

[124]  Gerard Ghibaudo,et al.  How small the contacts could be optimal for nanoscale organic transistors , 2013 .

[125]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[126]  Kris Myny,et al.  Flexible thin-film NFC tags , 2015, IEEE Communications Magazine.

[127]  Kris Myny,et al.  50 MHz rectifier based on an organic diode , 2005, Nature materials.

[128]  Robert H. Reuss,et al.  Macroelectronics: Perspectives on Technology and Applications , 2005, Proceedings of the IEEE.

[129]  Andreas G. Andreou,et al.  Pentacene‐Zinc Oxide Vertical Diode with Compatible Grains and 15‐MHz Rectification , 2008 .

[130]  Jinwen Zhang,et al.  AU-SWCNTS-HF Schottky diodes fabricated by dielectrophoresis , 2014, 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT).

[131]  J. Rogers,et al.  Synthesis, assembly and applications of semiconductor nanomembranes , 2011, Nature.

[132]  A. Salleo Charge transport in polymeric transistors , 2007 .

[133]  C. Rutherglen,et al.  Nanotube electronics for radiofrequency applications. , 2009, Nature nanotechnology.

[134]  Georges Gielen,et al.  High-performance a-In-Ga-Zn-O Schottky diode with oxygen-treated metal contacts , 2012 .

[135]  Hideki Shirakawa,et al.  Nobel Lecture: The discovery of polyacetylene film-the dawning of an era of conducting polymers , 2001 .

[136]  R. C. Tiberio,et al.  Fabrication of dissimilar metal electrodes with nanometer interelectrode distance for molecular electronic device characterization , 2000 .

[137]  Micah J. Green,et al.  Polymer-stabilized graphene dispersions at high concentrations in organic solvents for nanocomposite production , 2011 .

[138]  J. Genoe,et al.  Ultra-High Frequency rectification using organic diodes , 2008, 2008 IEEE International Electron Devices Meeting.

[139]  Kris Myny,et al.  Comparison of organic diode structures regarding high-frequency rectification behavior in radio-frequency identification tags , 2006 .

[140]  J. Coleman,et al.  Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions , 2008, 0809.2690.

[141]  Jihoon Kang,et al.  Tuning of Ag work functions by self-assembled monolayers of aromatic thiols for an efficient hole injection for solution processed triisopropylsilylethynyl pentacene organic thin film transistors , 2008 .

[142]  M. Caironi,et al.  Large Area and Flexible Electronics , 2015 .

[143]  Bruno Froppier,et al.  Schottky diode rectifier for power harvesting application , 2012, 2012 IEEE International Conference on RFID-Technologies and Applications (RFID-TA).

[144]  Gerald J. Brady,et al.  Dose-controlled, floating evaporative self-assembly and alignment of semiconducting carbon nanotubes from organic solvents. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[145]  Yong-Young Noh,et al.  Large Area and Flexible Electronics: Caironi/Large Area and Flexible Electronics , 2015 .

[146]  G. Whitesides,et al.  Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.

[147]  Etienne Perret,et al.  Radio Frequency Identification and Sensors: From RFID to Chipless RFID , 2014 .

[148]  Mona E. Zaghloul,et al.  CMOS foundry implementation of Schottky diodes for RF detection , 1996 .

[149]  Yong-Young Noh,et al.  Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films , 2012, Nature.

[150]  Emmanuel Dubois,et al.  Radio-frequency and low noise characteristics of SOI technology on plastic for flexible electronics , 2013 .

[151]  Hubregt J. Visser,et al.  RF Energy Harvesting and Transport for Wireless Sensor Network Applications: Principles and Requirements , 2013, Proceedings of the IEEE.

[152]  J. Takeya Organic Single-Crystal Field-Effect Transistors , 2009 .

[153]  H. B. Weber,et al.  Low-temperature conductance measurements on single molecules , 2003 .

[154]  Luisa Petti,et al.  Flexible Self-Aligned Amorphous InGaZnO Thin-Film Transistors With Submicrometer Channel Length and a Transit Frequency of 135 MHz , 2013, IEEE Transactions on Electron Devices.

[155]  Weidong Zhou,et al.  High-performance green flexible electronics based on biodegradable cellulose nanofibril paper , 2015, Nature Communications.

[156]  M. Ratner,et al.  Molecular Self‐Assembled Monolayers and Multilayers for Organic and Unconventional Inorganic Thin‐Film Transistor Applications , 2009 .

[157]  T. V. Prabhakar,et al.  Near Field Communication – Applications and Performance Studies , 2012 .

[158]  Taehyoung Zyung,et al.  Improved Contact Properties for Organic Thin-Film Transistors Using Self-Assembled Monolayer , 2004 .

[159]  A. Yamano,et al.  High‐Performance Solution‐Processable N‐Shaped Organic Semiconducting Materials with Stabilized Crystal Phase , 2014, Advanced materials.

[160]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[161]  Stuart R. Thomas,et al.  Solution-processable metal oxide semiconductors for thin-film transistor applications. , 2013, Chemical Society reviews.

[162]  K. Shepard,et al.  Graphene field-effect transistors with gigahertz-frequency power gain on flexible substrates. , 2013, Nano letters.

[163]  Antonio Facchetti,et al.  Printed diodes operating at mobile phone frequencies , 2014, Proceedings of the National Academy of Sciences.

[164]  Jenshan Lin,et al.  RF Characteristics of Room-Temperature-Deposited, Small Gate Dimension Indium Zinc Oxide TFTs , 2008 .

[165]  J. Landt,et al.  The history of RFID , 2005, IEEE Potentials.

[166]  Zexiang Shen,et al.  Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps. , 2011, ACS nano.

[167]  Hyunhyub Ko,et al.  Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors , 2010, Nature.

[168]  Zhenqiang Ma,et al.  7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate , 2007 .

[169]  Yasuhiko Arakawa,et al.  High Current-Gain Cutoff Frequencies above 10 MHz in n-Channel C60 and p-Channel Pentacene Thin-Film Transistors , 2011 .

[170]  A. J. Dinusha Rathnayaka,et al.  Evaluation of wireless home automation technologies , 2011, 5th IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2011).

[171]  Amritesh Rai,et al.  Large‐Area Monolayer MoS2 for Flexible Low‐Power RF Nanoelectronics in the GHz Regime , 2016, Advanced materials.

[172]  H. Wagner,et al.  The role of surfactants in dispersion of carbon nanotubes. , 2006, Advances in colloid and interface science.

[173]  H. Ozaki,et al.  Oxide TFT rectifier achieving 13.56-MHz wireless operation with DC output up to 12 V , 2010, 2010 International Electron Devices Meeting.

[174]  D. Lupo,et al.  Organic Rectifying Diode and Circuit for Wireless Power Harvesting at 13.56 MHz , 2014, IEEE Transactions on Electron Devices.

[175]  Ari Juels,et al.  RFID security and privacy: a research survey , 2006, IEEE Journal on Selected Areas in Communications.

[176]  M. Dragoman,et al.  Coplanar waveguide on graphene in the range 40 MHz–110 GHz , 2011 .

[177]  P. Erhart,et al.  High‐Entropy Mixtures of Pristine Fullerenes for Solution‐Processed Transistors and Solar Cells , 2015, Advanced materials.

[178]  Yong‐Hoon Kim,et al.  Anomalous length scaling of carbon nanotube-metal contact resistance: An ab initio study , 2012 .

[179]  John A. Rogers,et al.  Bendable single crystal silicon thin film transistors formed by printing on plastic substrates , 2005 .

[180]  P. D. Mitcheson,et al.  Ambient RF Energy Harvesting in Urban and Semi-Urban Environments , 2013, IEEE Transactions on Microwave Theory and Techniques.

[181]  J. E. Jacobs,et al.  ZnO field-effect transistor , 1968 .

[182]  J. Meindl,et al.  Monolayer metallic nanotube interconnects: promising candidates for short local interconnects , 2005, IEEE Electron Device Letters.

[183]  Qiang Zhang,et al.  Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution. , 2013, ACS nano.

[184]  Zhihua Chen,et al.  Macroscopic and high-throughput printing of aligned nanostructured polymer semiconductors for MHz large-area electronics , 2015, Nature Communications.

[185]  D. Bradley,et al.  The Influence of Film Morphology in High‐Mobility Small‐Molecule:Polymer Blend Organic Transistors , 2010 .

[186]  沈劲鹏,et al.  A passive UHF RFID tag with a dynamic-Vth-cancellation rectifier , 2013 .

[187]  P. Weiss,et al.  Utilizing self-assembled multilayers in lithographic processing for nanostructure fabrication: Initial evaluation of the electrical integrity of nanogaps , 2005 .

[188]  H. A. Klasens,et al.  A tin oxide field-effect transistor , 1964 .

[189]  Göran Gustafsson,et al.  All-printed diode operating at 1.6 GHz , 2014, Proceedings of the National Academy of Sciences.

[190]  Jarrod Vaillancourt,et al.  High-speed thin-film transistor on flexible substrate fabricated at room temperature , 2006 .

[191]  Wang Bo,et al.  A passive UHF RFID tag with a dynamic-Vth-cancellation rectifier , 2013 .

[192]  Phaedon Avouris,et al.  High-frequency performance of scaled carbon nanotube array field-effect transistors , 2012 .

[193]  Erik van Veenendaal,et al.  A 13.56-MHz RFID System Based on Organic Transponders , 2006, IEEE Journal of Solid-State Circuits.

[194]  Leonhard Reindl,et al.  SAW devices as wireless passive sensors , 1996, 1996 IEEE Ultrasonics Symposium. Proceedings.

[195]  Yu-Cheng Hsu,et al.  An AC-DC rectifier for RF energy harvesting system , 2012, 2012 Asia Pacific Microwave Conference Proceedings.

[196]  Ute Zschieschang,et al.  High-mobility polymer gate dielectric pentacene thin film transistors , 2002 .

[197]  Randy Hoffman,et al.  An amorphous oxide semiconductor thin-film transistor route to oxide electronics , 2014 .

[198]  Ujjal Kumar Sur,et al.  Carbon Nanotube Radio , 2011 .

[199]  Lei Liao,et al.  Interface Engineering for High‐Performance Top‐Gated MoS2 Field‐Effect Transistors , 2014, Advanced materials.

[200]  R. J. Kline,et al.  Vertically Segregated Structure and Properties of Small Molecule–Polymer Blend Semiconductors for Organic Thin‐Film Transistors , 2012 .

[201]  S. Olthof,et al.  Photoelectron spectroscopy study of systematically varied doping concentrations in an organic semiconductor layer using a molecular p-dopant , 2009 .

[202]  T. Hasegawa,et al.  Fabrication of nanoscale gaps using a combination of self-assembled molecular and electron beam lithographic techniques , 2006 .

[203]  R. Krupke,et al.  Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes , 2003, Science.

[204]  K. Takimiya,et al.  High‐Speed Flexible Organic Field‐Effect Transistors with a 3D Structure , 2011, Advanced materials.

[205]  Substrate effect on single carbon nanotube based infrared sensors , 2013, 2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013).

[206]  Mayumi Uno,et al.  Very High Mobility in Solution-Processed Organic Thin-Film Transistors of Highly Ordered [1]Benzothieno[3,2-b]benzothiophene Derivatives , 2009 .

[207]  Guy A. E. Vandenbosch,et al.  An Integrated a-IGZO UHF Energy Harvester for Passive RFID Tags , 2014, IEEE Transactions on Electron Devices.

[208]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[209]  Weidong Zhou,et al.  Microwave flexible transistors on cellulose nanofibrillated fiber substrates , 2015 .

[210]  Aram Amassian,et al.  Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography , 2014, Nature Communications.

[211]  T. Kawamura,et al.  1.5-V Operating fully-depleted amorphous oxide thin film transistors achieved by 63-mV/dec subthreshold slope , 2008, 2008 IEEE International Electron Devices Meeting.

[212]  Ya‐Ping Sun,et al.  Dispersion and solubilization of carbon nanotubes. , 2003, Journal of nanoscience and nanotechnology.

[213]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[214]  Donald Lupo,et al.  High rectifier output voltages with printed organic charge pump circuit , 2014 .

[215]  S. Banerjee,et al.  Radio Frequency Transistors and Circuits Based on CVD MoS2. , 2015, Nano letters.

[216]  G. Dambrine,et al.  Flexible gigahertz transistors derived from solution-based single-layer graphene. , 2012, Nano letters.

[217]  M. Kanatzidis,et al.  Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. , 2011, Nature materials.

[218]  D. Bradley,et al.  1 GHz Pentacene Diode Rectifiers Enabled by Controlled Film Deposition on SAM‐Treated Au Anodes , 2016 .

[219]  Byung-Do Yang,et al.  A Transparent Logic Circuit for RFID Tag in a‐IGZO TFT Technology , 2013 .

[220]  Yusuf Leblebici,et al.  MoS2 transistors operating at gigahertz frequencies. , 2014, Nano letters.

[221]  Paul Heremans,et al.  Mechanical and Electronic Properties of Thin‐Film Transistors on Plastic, and Their Integration in Flexible Electronic Applications , 2016, Advanced materials.

[222]  D. Lupo,et al.  Printed Half-Wave and Full-Wave Rectifier Circuits Based on Organic Diodes , 2013, IEEE Transactions on Electron Devices.

[223]  Vivek Subramanian,et al.  Megahertz-class printed high mobility organic thin-film transistors and inverters on plastic using attoliter-scale high-speed gravure-printed sub-5 μm gate electrodes , 2014 .

[224]  Erich Schlecht,et al.  Carbon nanotube Schottky diodes using Ti-Schottky and Pt-Ohmic contacts for high frequency applications. , 2005, Nano letters.

[225]  Zettl,et al.  Extreme oxygen sensitivity of electronic properties of carbon nanotubes , 2000, Science.

[226]  Aram Amassian,et al.  Solution‐Processed Small Molecule‐Polymer Blend Organic Thin‐Film Transistors with Hole Mobility Greater than 5 cm2/Vs , 2012, Advanced materials.

[227]  M. Fuhrer,et al.  Single Carbon Nanotube Schottky Diode Microwave Rectifiers , 2011, IEEE Transactions on Microwave Theory and Techniques.

[228]  E. S. Soldatov,et al.  Formation of molecular transistor electrodes by electromigration , 2010, International Conference on Micro- and Nano-Electronics.

[229]  H. Sirringhaus,et al.  Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. , 2011, Nature materials.

[230]  Frank Ellinger,et al.  Organic pin-diodes approaching ultra-high-frequencies , 2012 .

[231]  A. Kawabata,et al.  Direct Diameter-Controlled Growth of Multiwall Carbon Nanotubes on Nickel-Silicide Layer , 2003 .

[232]  T. Jackson,et al.  Stacked pentacene layer organic thin-film transistors with improved characteristics , 1997, IEEE Electron Device Letters.

[233]  Zhenqiang Ma,et al.  Flexible radio-frequency single-crystal germanium switch on plastic substrates , 2014 .

[234]  S. Maruyama,et al.  Deformable transparent all-carbon-nanotube transistors , 2012 .

[235]  Klaus Müllen,et al.  A Soluble Pentacene Precursor: Synthesis, Solid‐State Conversion into Pentacene and Application in a Field‐Effect Transistor , 1999 .

[236]  A. Arias,et al.  Materials and applications for large area electronics: solution-based approaches. , 2010, Chemical reviews.

[237]  A. Song,et al.  Flexible indium–gallium–zinc–oxide Schottky diode operating beyond 2.45 GHz , 2015, Nature Communications.

[238]  H. Matsui,et al.  Short‐Channel Solution‐Processed Organic Semiconductor Transistors and their Application in High‐Speed Organic Complementary Circuits and Organic Rectifiers , 2015 .

[239]  ZnO based thin-film transistor with high-κ gadolinium and praseodymium oxide as gate dielectric , 2009, 2009 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC).

[240]  A. Ismail,et al.  Zinc oxide thin films prepared by thermal evaporation deposition and its photocatalytic activity , 2006 .

[241]  Sang Woo Kim,et al.  Oxide Thin Film Transistor Circuits for Transparent RFID Applications , 2010, IEICE Trans. Electron..

[242]  G. Gelinck,et al.  Electrical Characterization of Flexible InGaZnO Transistors and 8-b Transponder Chip Down to a Bending Radius of 2 mm , 2015, IEEE Transactions on Electron Devices.

[243]  T. Hino,et al.  A new utilization of organic molecules for nanofabrication using the molecular ruler method , 2008 .

[244]  Donald Lupo,et al.  Gravure printed organic rectifying diodes operating at high frequencies , 2009 .

[245]  A. Niknejad,et al.  Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. , 2012, Nano letters.

[246]  Georges Gielen,et al.  Gigahertz Operation of a-IGZO Schottky Diodes , 2013, IEEE Transactions on Electron Devices.

[247]  E. Menard,et al.  High-speed mechanically flexible single-crystal silicon thin-film transistors on plastic substrates , 2006, IEEE Electron Device Letters.

[248]  A. Amassian,et al.  Radio Frequency Coplanar ZnO Schottky Nanodiodes Processed from Solution on Plastic Substrates. , 2016, Small.

[249]  Zexiang Shen,et al.  Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas , 2013, Nanotechnology.

[250]  Emmanuel Dubois,et al.  A converging route towards very high frequency, mechanically flexible, and performance stable integrated electronics , 2013 .

[251]  S. Hsu,et al.  Gigahertz flexible graphene transistors for microwave integrated circuits. , 2014, ACS nano.

[252]  Joungho Kim,et al.  Towards Gigahertz Operation: Ultrafast Low Turn‐on Organic Diodes and Rectifiers Based on C60 and Tungsten Oxide , 2011, Advanced materials.

[253]  Jaeyoung Kim,et al.  All-Printed and Roll-to-Roll-Printable 13.56-MHz-Operated 1-bit RF Tag on Plastic Foils , 2010, IEEE Transactions on Electron Devices.

[254]  H. Stockman,et al.  Communication by Means of Reflected Power , 1948, Proceedings of the IRE.

[255]  Chongwu Zhou,et al.  Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock. , 2012, ACS nano.

[256]  Li Tao,et al.  Towards the design and fabrication of graphene based flexible GHz radio receiver systems , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[257]  P. Nikitin,et al.  Antenna design for UHF RFID tags: a review and a practical application , 2005, IEEE Transactions on Antennas and Propagation.

[259]  R. Kaner,et al.  Intercalation and exfoliation routes to graphite nanoplatelets , 2005 .

[260]  Weidong Zhou,et al.  RF model of flexible microwave single-crystalline silicon nanomembrane PIN diodes on plastic substrate , 2011, Microelectron. J..

[261]  Klaus Finkenzeller,et al.  Rfid Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification , 2003 .

[262]  Adrian M. Ionescu,et al.  Organic half-wave rectifier fabricated by stencil lithography on flexible substrate , 2012 .

[263]  A. Salleo,et al.  Flexible Electronics: Materials and Applications , 2009 .

[264]  E. Linfield,et al.  The fabrication of embedded co-planar electrodes using a self-assembled monolayer molecular resist , 2009, Nanotechnology.

[265]  M. Hersam Progress towards monodisperse single-walled carbon nanotubes. , 2008, Nature nanotechnology.

[266]  T. Anthopoulos,et al.  Analysis of Schottky Contact Formation in Coplanar Au/ZnO/Al Nanogap Radio Frequency Diodes Processed from Solution at Low Temperature. , 2016, ACS applied materials & interfaces.

[267]  H. Bässler,et al.  Triplet states in organic semiconductors , 2009 .

[268]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[269]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[270]  P. Hesto,et al.  Fabrication and characterization of sub-3 nm gaps for single-cluster and single-molecule experiments , 2003 .

[271]  M. Fuhrer,et al.  Extraordinary Mobility in Semiconducting Carbon Nanotubes , 2004 .

[272]  Yunhao Lu,et al.  Band-Gap Engineering with Hybrid Graphane−Graphene Nanoribbons , 2009 .

[273]  C. Tang,et al.  Organic Electroluminescent Diodes , 1987 .

[274]  High-frequency, scaled MoS2 transistors , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).