Dead-End Elimination with a Polarizable Force Field Repacks PCNA Structures.

A balance of van der Waals, electrostatic, and hydrophobic forces drive the folding and packing of protein side chains. Although such interactions between residues are often approximated as being pairwise additive, in reality, higher-order many-body contributions that depend on environment drive hydrophobic collapse and cooperative electrostatics. Beginning from dead-end elimination, we derive the first algorithm, to our knowledge, capable of deterministic global repacking of side chains compatible with many-body energy functions. The approach is applied to seven PCNA x-ray crystallographic data sets with resolutions 2.5-3.8 Å (mean 3.0 Å) using an open-source software. While PDB_REDO models average an Rfree value of 29.5% and MOLPROBITY score of 2.71 Å (77th percentile), dead-end elimination with the polarizable AMOEBA force field lowered Rfree by 2.8-26.7% and improved mean MOLPROBITY score to atomic resolution at 1.25 Å (100th percentile). For structural biology applications that depend on side-chain repacking, including x-ray refinement, homology modeling, and protein design, the accuracy limitations of pairwise additivity can now be eliminated via polarizable or quantum mechanical potentials.

[1]  R. Read Improved Fourier Coefficients for Maps Using Phases from Partial Structures with Errors , 1986 .

[2]  J. Ponder,et al.  Force fields for protein simulations. , 2003, Advances in protein chemistry.

[3]  John Kuriyan,et al.  Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA , 1994, Cell.

[4]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[5]  Bruce Randall Donald,et al.  Algorithm for backrub motions in protein design , 2008, ISMB.

[6]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[7]  R. Goldstein Efficient rotamer elimination applied to protein side-chains and related spin glasses. , 1994, Biophysical journal.

[8]  Thomas Simonson,et al.  Pairwise decomposition of an MMGBSA energy function for computational protein design , 2014, J. Comput. Chem..

[9]  Johan Desmet,et al.  The dead-end elimination theorem and its use in protein side-chain positioning , 1992, Nature.

[10]  M. Washington,et al.  Structure of Monoubiquitinated PCNA and Implications for Translesion Synthesis and DNA Polymerase Exchange , 2010, Nature Structural &Molecular Biology.

[11]  K. Sharp,et al.  Potential energy functions for protein design. , 2007, Current opinion in structural biology.

[12]  Kevin Cowtan Likelihood weighting of partial structure factors using spline coefficients , 2005 .

[13]  David Baker,et al.  Macromolecular modeling with rosetta. , 2008, Annual review of biochemistry.

[14]  A. Brunger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. , 1992 .

[15]  M. Karplus,et al.  Effective energy function for proteins in solution , 1999, Proteins.

[16]  Vincent Breton,et al.  PDB_REDO: automated re-refinement of X-ray structure models in the PDB , 2009, Journal of applied crystallography.

[17]  Pengyu Y. Ren,et al.  The Polarizable Atomic Multipole-based AMOEBA Force Field for Proteins. , 2013, Journal of chemical theory and computation.

[18]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[19]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules J. Am. Chem. Soc. 1995, 117, 5179−5197 , 1996 .

[20]  J. Richardson,et al.  The penultimate rotamer library , 2000, Proteins.

[21]  S. L. Mayo,et al.  De novo protein design: fully automated sequence selection. , 1997, Science.

[22]  Alfonso Jaramillo,et al.  Computational protein design is a challenge for implicit solvation models. , 2005, Biophysical journal.

[23]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[24]  C. Lawrence,et al.  The Saccharomyces cerevisiae rev6-1 Mutation, Which Inhibits Both the Lesion Bypass and the Recombination Mode of DNA Damage Tolerance, Is an Allele of POL30, Encoding Proliferating Cell Nuclear Antigen , 2006, Genetics.

[25]  A. Brunger,et al.  A smooth and differentiable bulk-solvent model for macromolecular diffraction , 2010, Acta crystallographica. Section D, Biological crystallography.

[26]  C. Holm,et al.  In vivo analysis reveals that the interdomain region of the yeast proliferating cell nuclear antigen is important for DNA replication and DNA repair. , 1996, Genetics.

[27]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[28]  Roland L. Dunbrack,et al.  A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. , 2011, Structure.

[29]  Savvas Polydorides,et al.  Computational protein design: The proteus software and selected applications , 2013, J. Comput. Chem..

[30]  M. Karplus,et al.  Crystallographic R Factor Refinement by Molecular Dynamics , 1987, Science.

[31]  Michael Levitt,et al.  Super-resolution biomolecular crystallography with low-resolution data , 2010, Nature.

[32]  M. Hingorani,et al.  Structure of a mutant form of proliferating cell nuclear antigen that blocks translesion DNA synthesis. , 2008, Biochemistry.

[33]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[34]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[35]  Thomas Simonson,et al.  Reintroducing electrostatics into protein X-ray structure refinement: bulk solvent treated as a dielectric continuum. , 2003, Acta crystallographica. Section D, Biological crystallography.

[36]  Rubicelia Vargas,et al.  How Strong Is the Cα−H···OC Hydrogen Bond? , 2000 .

[37]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[38]  Jay W Ponder,et al.  Polarizable Atomic Multipole Solutes in a Generalized Kirkwood Continuum. , 2007, Journal of chemical theory and computation.

[39]  M. Hingorani,et al.  Distinct structural alterations in proliferating cell nuclear antigen block DNA mismatch repair. , 2013, Biochemistry.

[40]  Yixiang Cao,et al.  A Polarizable Force Field and Continuum Solvation Methodology for Modeling of Protein-Ligand Interactions. , 2005, Journal of chemical theory and computation.

[41]  Margaret E. Johnson,et al.  Current status of the AMOEBA polarizable force field. , 2010, The journal of physical chemistry. B.

[42]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole-based Molecular Mechanics for Organic Molecules. , 2011, Journal of chemical theory and computation.

[43]  J. Ponder,et al.  Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. , 1987, Journal of molecular biology.

[44]  S L Mayo,et al.  Coupling backbone flexibility and amino acid sequence selection in protein design , 1997, Protein science : a publication of the Protein Society.

[45]  Stephen L Mayo,et al.  One‐ and two‐body decomposable Poisson‐Boltzmann methods for protein design calculations , 2005, Protein science : a publication of the Protein Society.

[46]  D. Kern,et al.  Hidden alternate structures of proline isomerase essential for catalysis , 2010 .

[47]  Pedro E. M. Lopes,et al.  Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability: theory and applications , 2009, Theoretical chemistry accounts.

[48]  S. Jentsch,et al.  PCNA, the Maestro of the Replication Fork , 2007, Cell.

[49]  Philipp Stelter,et al.  Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation , 2003, Nature.

[50]  W. Kauzmann Some factors in the interpretation of protein denaturation. , 1959, Advances in protein chemistry.

[51]  Paul M. G. Curmi,et al.  Twist and shear in β-sheets and β-ribbons , 2002 .

[52]  Vijay S Pande,et al.  Polarizable Atomic Multipole X-Ray Refinement: Particle Mesh Ewald Electrostatics for Macromolecular Crystals. , 2011, Journal of chemical theory and computation.

[53]  F. Tama,et al.  Flexible multi-scale fitting of atomic structures into low-resolution electron density maps with elastic network normal mode analysis. , 2004, Journal of molecular biology.

[54]  Patrick J. Lau,et al.  Isolation and Characterization of New Proliferating Cell Nuclear Antigen (POL30) Mutator Mutants That Are Defective in DNA Mismatch Repair , 2002, Molecular and Cellular Biology.

[55]  Pablo Gainza,et al.  Osprey: Protein Design with Ensembles, Flexibility, and Provable Algorithms , 2022 .

[56]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[57]  M. Washington,et al.  PCNA trimer instability inhibits translesion synthesis by DNA polymerase η and by DNA polymerase δ. , 2013, DNA repair.

[58]  M. Schnieders,et al.  Polarizable atomic multipole X-ray refinement: weighting schemes for macromolecular diffraction. , 2011, Acta crystallographica. Section D, Biological crystallography.

[59]  Anastassis Perrakis,et al.  Automatic rebuilding and optimization of crystallographic structures in the Protein Data Bank , 2011, Bioinform..

[60]  Nathan A. Baker,et al.  Polarizable atomic multipole solutes in a Poisson-Boltzmann continuum. , 2007, The Journal of chemical physics.