Shape distributions

Measuring the similarity between 3D shapes is a fundamental problem, with applications in computer graphics, computer vision, molecular biology, and a variety of other fields. A challenging aspect of this problem is to find a suitable shape signature that can be constructed and compared quickly, while still discriminating between similar and dissimilar shapes.In this paper, we propose and analyze a method for computing shape signatures for arbitrary (possibly degenerate) 3D polygonal models. The key idea is to represent the signature of an object as a shape distribution sampled from a shape function measuring global geometric properties of an object. The primary motivation for this approach is to reduce the shape matching problem to the comparison of probability distributions, which is simpler than traditional shape matching methods that require pose registration, feature correspondence, or model fitting.We find that the dissimilarities between sampled distributions of simple shape functions (e.g., the distance between two random points on a surface) provide a robust method for discriminating between classes of objects (e.g., cars versus airplanes) in a moderately sized database, despite the presence of arbitrary translations, rotations, scales, mirrors, tessellations, simplifications, and model degeneracies. They can be evaluated quickly, and thus the proposed method could be applied as a pre-classifier in a complete shape-based retrieval or analysis system concerned with finding similar whole objects. The paper describes our early experiences using shape distributions for object classification and for interactive web-based retrieval of 3D models.

[1]  A. Bhattacharyya On a measure of divergence between two statistical populations defined by their probability distributions , 1943 .

[2]  Solomon Kullback,et al.  Information Theory and Statistics , 1970, The Mathematical Gazette.

[3]  Matthew Goldstein,et al.  Kn -nearest Neighbor Classification , 1972, IEEE Trans. Inf. Theory.

[4]  Ian T. Young,et al.  An Analysis Technique for Biological Shape. I , 1974, Inf. Control..

[5]  Charles C. Tappert,et al.  Cursive Script Recognition by Elastic Matching , 1982, IBM J. Res. Dev..

[6]  Helen C. Shen,et al.  Generalized texture representation and metric , 1983, Comput. Vis. Graph. Image Process..

[7]  Berthold K. P. Horn Extended Gaussian images , 1984, Proceedings of the IEEE.

[8]  D. Kendall SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .

[9]  Azriel Rosenfeld,et al.  A distance metric for multidimensional histograms , 1985, Comput. Vis. Graph. Image Process..

[10]  Wen-Hsiang Tsai,et al.  Attributed String Matching with Merging for Shape Recognition , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Ramesh C. Jain,et al.  Three-dimensional object recognition , 1985, CSUR.

[12]  Yehezkel Lamdan,et al.  Geometric Hashing: A General And Efficient Model-based Recognition Scheme , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[13]  Steven Skiena,et al.  Reconstructing sets from interpoint distances (extended abstract) , 1990, SCG '90.

[14]  Wesley E. Snyder,et al.  Application of Affine-Invariant Fourier Descriptors to Recognition of 3-D Objects , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Ruzena Bajcsy,et al.  Recovery of Parametric Models from Range Images: The Case for Superquadrics with Global Deformations , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Dimitris N. Metaxas,et al.  Dynamic 3D models with local and global deformations: deformable superquadrics , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[17]  Esther M. Arkin,et al.  An efficiently computable metric for comparing polygonal shapes , 1991, SODA '90.

[18]  Alex Pentland,et al.  Closed-form solutions for physically-based shape modeling and recognition , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[19]  U. Grenander,et al.  Structural Image Restoration through Deformable Templates , 1991 .

[20]  Dimitris N. Metaxas,et al.  Dynamic 3D Models with Local and Global Deformations: Deformable Superquadrics , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Andrew Zisserman,et al.  Geometric invariance in computer vision , 1992 .

[22]  Hongmei Wang,et al.  Contour shape description based on an arch height function , 1992, Pattern Recognit..

[23]  Katsushi Ikeuchi,et al.  Shape representation and image segmentation using deformable surfaces , 1992, Image Vis. Comput..

[24]  Neil A. Thacker,et al.  Pairwise representations of shape , 1992, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition.

[25]  Richard J. Prokop,et al.  A survey of moment-based techniques for unoccluded object representation and recognition , 1992, CVGIP Graph. Model. Image Process..

[26]  Neil A. Thacker,et al.  The Use of Geometric Histograms for Model-Based Object Recognition , 1993, BMVC.

[27]  Katsushi Ikeuchi,et al.  A spherical representation for the recognition of curved objects , 1993, 1993 (4th) International Conference on Computer Vision.

[28]  Jake K. Aggarwal,et al.  Model-based object recognition in dense-range images—a review , 1993, CSUR.

[29]  Neil A. Thacker,et al.  An Analysis of Pairwise Geometric Histograms for View-Based Object Recognition , 1994, BMVC.

[30]  Martin D. Levine,et al.  Recovering parametric geons from multiview range data , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Alessandro Verri,et al.  On the recognition of the alphabet of the sign language through size functions , 1994, Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5).

[32]  Arthur R. Pope Model-Based Object Recognition - A Survey of Recent Research , 1994 .

[33]  Paul J. Besl Triangles as a Primary Representation , 1994, Object Representation in Computer Vision.

[34]  Shih-Fu Chang,et al.  Extracting multidimensional signal features for content-based visual query , 1995, Other Conferences.

[35]  Emanuele Trucco,et al.  Geometric Invariance in Computer Vision , 1995 .

[36]  Neil A. Thacker,et al.  Robust Recognition of Scaled Shapes using Pairwise Geometric Histograms , 1995, BMVC.

[37]  Alex Pentland,et al.  Modal Matching for Correspondence and Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  N. Thacker,et al.  Multiple shape recognition using pairwise geometric histogram based algorithms , 1995 .

[39]  David Salesin,et al.  Fast multiresolution image querying , 1995, SIGGRAPH.

[40]  Michael Stonebraker,et al.  Chabot: Retrieval from a Relational Database of Images , 1995, Computer.

[41]  Neil A. Thacker,et al.  Assessing the completeness properties of pairwise geometric histograms , 1995, Image Vis. Comput..

[42]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[43]  Dinesh Manocha,et al.  Simplification envelopes , 1996, SIGGRAPH.

[44]  B. Huet,et al.  Structural Indexing of Infra-red Images using Statistical Histogram Comparison , 1996 .

[45]  A. Ramm,et al.  The RADON TRANSFORM and LOCAL TOMOGRAPHY , 1996 .

[46]  Taku Yamazaki,et al.  Invariant histograms and deformable template matching for SAR target recognition , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[47]  Anil K. Jain,et al.  Object Matching Using Deformable Templates , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Subodh Kumar,et al.  Repairing CAD models , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[49]  Mark A. Ganter,et al.  Skeleton-based modeling operations on solids , 1997, SMA '97.

[50]  K. Mengersen,et al.  Robustness of ranking and selection rules using generalised g-and-k distributions , 1997 .

[51]  Neil A. Thacker,et al.  Optimal Pairwise Geometric Histograms , 1997, BMVC.

[52]  T. M. Murali,et al.  Consistent solid and boundary representations from arbitrary polygonal data , 1997, SI3D.

[53]  Chris Sander,et al.  Touring protein fold space with Dali/FSSP , 1998, Nucleic Acids Res..

[54]  Martial Hebert,et al.  Efficient multiple model recognition in cluttered 3-D scenes , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[55]  Ronen Basri,et al.  Determining the similarity of deformable shapes , 1998, Vision Research.

[56]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[57]  Leonidas J. Guibas,et al.  A metric for distributions with applications to image databases , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[58]  Gabriel Taubin,et al.  Converting sets of polygons to manifold surfaces by cutting and stitching , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[59]  Sven Loncaric,et al.  A survey of shape analysis techniques , 1998, Pattern Recognit..

[60]  Satoshi Matsuoka,et al.  Teddy: A Sketching Interface for 3D Freeform Design , 1999, SIGGRAPH Courses.

[61]  Dongmei Zhang,et al.  Harmonic maps and their applications in surface matching , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[62]  James Scott,et al.  Fast polygon mesh querying by example , 1999, SIGGRAPH '99.

[63]  David A. Forsyth,et al.  Shape, Contour and Grouping in Computer Vision , 1999, Lecture Notes in Computer Science.

[64]  Joachim M. Buhmann,et al.  Empirical evaluation of dissimilarity measures for color and texture , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[65]  Jules Bloomenthal,et al.  Skeletal methods of shape manipulation , 1999, Proceedings Shape Modeling International '99. International Conference on Shape Modeling and Applications.

[66]  Hans-Peter Kriegel,et al.  Nearest Neighbor Classification in 3D Protein Databases , 1999, ISMB.

[67]  Stefan Carlsson,et al.  Order Structure, Correspondence, and Shape Based Categories , 1999, Shape, Contour and Grouping in Computer Vision.

[68]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[69]  Grégoire Malandain,et al.  Structural Object Matching , 2000 .

[70]  I. Dryden,et al.  Using circulant symmetry to model featureless objects , 2000 .

[71]  Jitendra Malik,et al.  Shape contexts enable efficient retrieval of similar shapes , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[72]  Jitendra Malik,et al.  Matching Shapes , 2001, ICCV.

[73]  Remco C. Veltkamp,et al.  State of the Art in Shape Matching , 2001, Principles of Visual Information Retrieval.

[74]  Michael Elad,et al.  Content Based Retrieval of VRML Objects - An Iterative and Interactive Approach , 2001, Eurographics Multimedia Workshop.

[75]  Michael Elad,et al.  Content based retrieval of VRML objects: an iterative and interactive approach , 2002 .

[76]  Warren D. Smith,et al.  Reconstructing Sets From Interpoint Distances , 2003 .

[77]  Ali Shokoufandeh,et al.  Shock Graphs and Shape Matching , 1998, International Journal of Computer Vision.

[78]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[79]  Alessandro Verri,et al.  Computing Size Functions from Edge Maps , 2004, International Journal of Computer Vision.