Time-energy optimal path tracking for robots: a numerically efficient optimization approach

This paper focuses on time-optimal and time-energy optimal path tracking, which are subproblems in optimal motion planning of robot systems. Through a nonlinear change of variables, the time-energy optimal path tracking problem is transformed here into a convex optimal control problem with a single state variable. A direct transcription method is presented that reduces finding the globally optimal trajectory to solving a second-order cone program using robust numerical algorithms that are freely available. Application to a 6-DOF KUKA 361 industrial robot carrying out a writing task illustrates the practicality of the new method.

[1]  L. Biegler Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation , 1984 .

[2]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[3]  Kang G. Shin,et al.  Minimum-time control of robotic manipulators with geometric path constraints , 1985 .

[4]  J. Bobrow,et al.  Time-Optimal Control of Robotic Manipulators Along Specified Paths , 1985 .

[5]  N. McKay,et al.  A dynamic programming approach to trajectory planning of robotic manipulators , 1986 .

[6]  Friedrich Pfeiffer,et al.  A concept for manipulator trajectory planning , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[7]  Ming-Chuan Leu,et al.  Optimal trajectory generation for robotic manipulators using dynamic programming , 1987 .

[8]  Jean-Jacques E. Slotine,et al.  Improving the Efficiency of Time-Optimal Path-Following Algorithms , 1988, 1988 American Control Conference.

[9]  Yaobin Chen,et al.  Structure of minimum-time control law for robotic manipulators with constrained paths , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[10]  Steven Dubowsky,et al.  On computing the global time-optimal motions of robotic manipulators in the presence of obstacles , 1991, IEEE Trans. Robotics Autom..

[11]  J. Betts,et al.  Path constrained trajectory optimization using sparse sequential quadratic programming , 1991 .

[12]  Z. Shiller,et al.  Computation of Path Constrained Time Optimal Motions With Dynamic Singularities , 1992 .

[13]  Zvi Shiller,et al.  On singular time-optimal control along specified paths , 1994, IEEE Trans. Robotics Autom..

[14]  Zvi Shiller,et al.  Time-energy optimal control of articulated systems with geometric path constraints , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[15]  Bruno Siciliano,et al.  Modeling and Control of Robot Manipulators , 1995 .

[16]  H. Bock,et al.  The method of orienting curves and its application to manipulator trajectory planning , 1997 .

[17]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[18]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[19]  E. Croft,et al.  Smooth and time-optimal trajectory planning for industrial manipulators along specified paths , 2000 .

[20]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[21]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[22]  Faculteit Ingenieurswetenschappen,et al.  COMPLIANT ROBOT MOTION: FROM PATH PLANNING OR HUMAN DEMONSTRATION TO FORCE CONTROLLED TASK EXECUTION. , 2006 .

[23]  Pierre-Brice Wieber,et al.  Optimal Trajectory Generation for Manipulator Robots under Thermal Constraints , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[24]  Wolfram Burgard,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[25]  M. Diehl,et al.  Practical Time-Optimal Trajectory Planning for Robots: a Convex Optimization Approach , 2008 .