Real-time adaptive input design for the determination of competitive adsorption isotherms in liquid chromatography
暂无分享,去创建一个
Tilman Barz | Stefan Körkel | C. DianaC.López | Sebastian F. Walter | Mariano Nicolás Cruz Bournazou | S. Körkel | T. Barz | M. N. C. Bournazou | C. DianaC.López
[1] A. N. Tikhonov,et al. Solutions of ill-posed problems , 1977 .
[2] Biao Huang,et al. Receding horizon experiment design with application in SOFC parameter estimation , 2010 .
[3] Sebastian Engell,et al. Optimization-based control of a reactive simulated moving bed process for glucose isomerization , 2004 .
[4] Giuseppe Carlo Calafiore,et al. Robot Dynamic Calibration: Optimal Excitation Trajectories and Experimental Parameter Estimation , 2001 .
[5] Brian Armstrong,et al. On Finding Exciting Trajectories for Identification Experiments Involving Systems with Nonlinear Dynamics , 1989, Int. J. Robotics Res..
[6] Rohit S. Patwardhan,et al. A moving horizon approach to input design for closed loop identification , 2014 .
[7] T. Brubaker,et al. Nonlinear Parameter Estimation , 1979 .
[8] Laurent Hascoët,et al. The Tapenade automatic differentiation tool: Principles, model, and specification , 2013, TOMS.
[9] Jan Swevers,et al. Optimal robot excitation and identification , 1997, IEEE Trans. Robotics Autom..
[10] John F. MacGregor,et al. The analysis and design of binary vapour‐liquid equilibrium experiments. Part II: The design of experiments , 1977 .
[11] J. Albersmeyer. Adjoint-based algorithms and numerical methods for sensitivity generation and optimization of large scale dynamic systems , 2010 .
[12] Sandro Macchietto,et al. Model-based design of experiments for parameter precision: State of the art , 2008 .
[13] A. Seidel-Morgenstern,et al. Frontal analysis method to determine competitive adsorption isotherms. , 2001, Journal of chromatography. A.
[14] Shamsul Qamar,et al. Efficient and accurate numerical simulation of nonlinear chromatographic processes , 2011, Comput. Chem. Eng..
[15] Hans Bock,et al. Numerical methods for optimum experimental design in DAE systems , 2000 .
[16] André Bardow,et al. Optimal experimental design of ill-posed problems: The METER approach , 2008, Comput. Chem. Eng..
[17] James C. Sutherland,et al. Graph-Based Software Design for Managing Complexity and Enabling Concurrency in Multiphysics PDE Software , 2011, TOMS.
[18] A. E. Hoerl,et al. Ridge regression: biased estimation for nonorthogonal problems , 2000 .
[19] Guy A. Dumont,et al. Moving-Horizon Predictive Input Design for Closed-Loop Identification , 2015 .
[20] Roos D. Servaes,et al. Optimal temperature input design for estimation of the square root model parameters: parameter accuracy and model validity restrictions. , 2002, International journal of food microbiology.
[21] J. D. Stigter,et al. On adaptive optimal input design: A bioreactor case study , 2006 .
[22] Carol S. Woodward,et al. Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..
[23] René Schenkendorf,et al. Online model selection approach based on Unscented Kalman Filtering , 2013 .
[24] Harvey Arellano-Garcia,et al. Online Model-Based Redesign of Experiments for Parameter Estimation Applied to Closed-loop Controller Tuning , 2013 .
[25] P. Hansen. Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .
[26] Biao Huang,et al. Constrained receding‐horizon experiment design and parameter estimation in the presence of poor initial conditions , 2011 .
[27] Donald W. Marquaridt. Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation , 1970 .
[28] D. M. Titterington,et al. Recent advances in nonlinear experiment design , 1989 .
[29] Costas Kravaris,et al. Advances and selected recent developments in state and parameter estimation , 2013, Comput. Chem. Eng..
[30] M. Foracchia,et al. POPED, a software for optimal experiment design in population kinetics , 2004, Comput. Methods Programs Biomed..
[31] J. Kiefer,et al. Optimum Designs in Regression Problems , 1959 .
[32] Graham C. Goodwin,et al. Dynamic System Identification: Experiment Design and Data Analysis , 2012 .
[33] André Bardow,et al. Optimal Experimental Design for the Characterization of Liquid–Liquid Equilibria , 2014 .
[34] Jay H. Lee,et al. Repetitive model predictive control applied to a simulated moving bed chromatography system , 2000 .
[35] Håkan Hjalmarsson,et al. Identification of ARX systems with non-stationary inputs - asymptotic analysis with application to adaptive input design , 2009, Autom..
[36] Jürgen Hubbuch,et al. High Throughput Screening for the Design and Optimization of Chromatographic Processes - Miniaturization, Automation and Parallelization of Breakthrough and Elution Studies , 2008 .
[37] Sandro Macchietto,et al. The optimal design of dynamic experiments , 1989 .
[38] Hassan Hammouri,et al. Optimal input design for online identification: a coupled observer-MPC approach , 2008 .
[39] P. I. Barton,et al. Design, Execution, and Analysis of Time-Varying Experiments for Model Discrimination and Parameter Estimation in Microreactors , 2014 .
[40] Günter Wozny,et al. Nonlinear ill-posed problem analysis in model-based parameter estimation and experimental design , 2015, Comput. Chem. Eng..
[41] HascoetLaurent,et al. The Tapenade automatic differentiation tool , 2013 .
[42] Massimiliano Barolo,et al. Optimal design of clinical tests for the identification of physiological models of type 1 diabetes in the presence of model mismatch , 2011, Medical & Biological Engineering & Computing.
[43] Pascal Dufour,et al. Observer and model predictive control for on-line parameter identification in nonlinear systems , 2013 .
[44] Raman K. Mehra,et al. Optimal input signals for parameter estimation in dynamic systems--Survey and new results , 1974 .
[45] Sebastian F. Walter,et al. Adjoint-based optimization of experimental designs with many control variables , 2014 .
[46] Tor Arne Johansen,et al. On Tikhonov regularization, bias and variance in nonlinear system identification , 1997, Autom..
[47] Michel Kinnaert,et al. A systematic approach to SMB processes model identification from batch experiments , 2007 .
[48] Massimiliano Barolo,et al. Online Model-Based Redesign of Experiments for Parameter Estimation in Dynamic Systems , 2009 .
[49] A. E. Hoerl,et al. Ridge Regression: Applications to Nonorthogonal Problems , 1970 .
[50] E. Haber,et al. Numerical methods for the design of large-scale nonlinear discrete ill-posed inverse problems , 2010 .
[51] Steven M Cramer,et al. Use of MiniColumns for linear isotherm parameter estimation and prediction of benchtop column performance. , 2015, Journal of chromatography. A.
[52] Günter Wozny,et al. Model‐based identifiable parameter determination applied to a simultaneous saccharification and fermentation process model for bio‐ethanol production , 2013, Biotechnology progress.
[53] G. Verghese,et al. Subset selection for improved parameter estimation in on-line identification of a synchronous generator , 1999 .
[54] Günter Wozny,et al. Experimental evaluation of an approach to online redesign of experiments for parameter determination , 2013 .
[55] Todd D. Murphey,et al. Real-time trajectory synthesis for information maximization using Sequential Action Control and least-squares estimation , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
[56] Anita M. Katti,et al. Fundamentals of Preparative and Nonlinear Chromatography , 1994 .
[57] Harvey Arellano-Garcia,et al. Handling Uncertainty in Model-Based Optimal Experimental Design , 2010 .
[58] E. Haber,et al. Optimal Experimental Design for the Large‐Scale Nonlinear Ill‐Posed Problem of Impedance Imaging , 2010 .
[59] Vivek Dua,et al. A joint model-based experimental design approach for the identification of kinetic models in continuous flow laboratory reactors , 2016, Comput. Chem. Eng..