A penalized nonparametric method for nonlinear constrained optimization based on noisy data

The objective of this study is to find a smooth function joining two points A and B with minimum length constrained to avoid fixed subsets. A penalized nonparametric method of finding the best path is proposed. The method is generalized to the situation where stochastic measurement errors are present. In this case, the proposed estimator is consistent, in the sense that as the number of observations increases the stochastic trajectory converges to the deterministic one. Two applications are immediate, searching the optimal path for an autonomous vehicle while avoiding all fixed obstacles between two points and flight planning to avoid threat or turbulence zones.

[1]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[2]  J. S. Marron,et al.  Wavelet estimation using Bayesian basis selection and basis averaging , 2000 .

[3]  Christopher Edwards,et al.  Advances in variable structure and sliding mode control , 2006 .

[4]  S. J. Asseo In-flight replanning of penetration routes to avoid threat zones of circular shapes , 1998, Proceedings of the IEEE 1998 National Aerospace and Electronics Conference. NAECON 1998. Celebrating 50 Years (Cat. No.98CH36185).

[5]  Jean-Paul Laumond,et al.  Robot Motion Planning and Control , 1998 .

[6]  Don A. Grundel Cooperative systems : control and optimization , 2007 .

[7]  Simon Parsons,et al.  Principles of Robot Motion: Theory, Algorithms and Implementations by Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, 603 pp., $60.00, ISBN 0-262-033275 , 2007, The Knowledge Engineering Review.

[8]  Joel W. Burdick,et al.  Alice: An information-rich autonomous vehicle for high-speed desert navigation: Field Reports , 2006 .

[9]  G. Wahba,et al.  Hybrid Adaptive Splines , 1997 .

[10]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[11]  Nouna Kettaneh,et al.  Statistical Modeling by Wavelets , 1999, Technometrics.

[12]  Ulrich Reif Orthogonality of cardinal B-splines in weighted Sobolev spaces , 1997 .

[13]  Panos M. Pardalos,et al.  Advances in Cooperative Control and Optimization , 2008 .

[14]  H. Attouch Variational convergence for functions and operators , 1984 .

[15]  Ronaldo Dias,et al.  Density estimation via hybrid splines , 1998 .

[16]  Jean-Claude Latombe,et al.  Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of obstacles , 2005, Algorithmica.

[17]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[18]  Bo Wahlberg,et al.  Selection of Best Orthonormal Rational Basis , 2000, SIAM J. Control. Optim..

[19]  Y. Jabri The Mountain Pass Theorem: Variants, Generalizations and Some Applications , 2003 .

[20]  Jacob Yadegar,et al.  Constructing optimal cyclic tours for planar exploration and obstacle avoidance : A graph theory approach , 2007 .

[21]  Anestis Antoniadis,et al.  Wavelet methods for smoothing noisy data , 1994 .

[22]  Ronaldo Dias Sequential adaptive nonparametric regression via h-splines , 1999 .

[23]  Ronald A. DeVore,et al.  Best Basis Selection for Approximation in Lp , 2003, Found. Comput. Math..

[24]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[25]  Joel W. Burdick,et al.  Alice: An information‐rich autonomous vehicle for high‐speed desert navigation , 2006 .

[26]  C. J. Stone,et al.  A study of logspline density estimation , 1991 .