INTERVAL ESTIMATORS FOR A BINOMIAL PROPORTION : COMPARISON OF TWENTY METHODS

• In applied statistics it is often necessary to obtain an interval estimate for an unknown proportion (p) based on binomial sampling. This topic is considered in almost every introductory course. However, the usual approximation is known to be poor when the true p is close to zero or to one. To identify alternative procedures with better properties twenty non-iterative methods for computing a (central) two-sided interval estimate for p were selected and compared in terms of coverage probability and expected length. From this study a clear classification of those methods has emerged. An important conclusion is that the interval based on asymptotic normality, but after the arcsine transformation and a continuity correction, and the Add 4 method of Agresti and Coull (1998) yield very reliable results, the choice between the two depending on the desired degree of conservativeness.

[1]  E. S. Pearson,et al.  THE USE OF CONFIDENCE OR FIDUCIAL LIMITS ILLUSTRATED IN THE CASE OF THE BINOMIAL , 1934 .

[2]  L. Brown,et al.  Interval Estimation for a Binomial Proportion , 2001 .

[3]  G R Cohen,et al.  Mid-P confidence intervals for the Poisson expectation. , 1994, Statistics in medicine.

[4]  D. G. Simpson,et al.  The Statistical Analysis of Discrete Data , 1989 .

[5]  S E Vollset,et al.  Confidence intervals for a binomial proportion. , 1994, Statistics in medicine.

[6]  Yoritake Fujino,et al.  Approximate binomial confidence limits , 1980 .

[7]  F. J. Anscombe,et al.  THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA , 1948 .

[8]  J. Shao,et al.  The jackknife and bootstrap , 1996 .

[9]  T. Tony Cai,et al.  Confidence Intervals for a binomial proportion and asymptotic expansions , 2002 .

[10]  George Casella,et al.  Refining binomial confidence intervals , 1986 .

[11]  Glen D Meeden,et al.  Fuzzy and randomized confidence intervals and P-values , 2005 .

[12]  R. Newcombe Two-sided confidence intervals for the single proportion: comparison of seven methods. , 1998, Statistics in medicine.

[13]  Alan Agresti,et al.  Simple and Effective Confidence Intervals for Proportions and Differences of Proportions Result from Adding Two Successes and Two Failures , 2000 .

[14]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[15]  B. Everitt,et al.  Statistical methods for rates and proportions , 1973 .

[16]  Terence J. O'Neill,et al.  Generalised Clopper–Pearson confidence intervals for the binomial proportion , 2006 .

[17]  B. K. Ghosh,et al.  A Comparison of Some Approximate Confidence Intervals for the Binomial Parameter , 1979 .

[18]  C. W. Clunies-Ross,et al.  Interval estimation for the parameter of a binomial distribution , 1958 .

[19]  K. Lui Confidence limits for the population prevalence rate based on the negative binomial distribution. , 1995, Statistics in medicine.

[20]  C. Blyth,et al.  Binomial Confidence Intervals , 1983 .

[21]  A. Agresti,et al.  Approximate is Better than “Exact” for Interval Estimation of Binomial Proportions , 1998 .

[22]  J. Reiczigel,et al.  Confidence intervals for the binomial parameter: some new considerations , 2003, Statistics in medicine.

[23]  J. Copas Exact Confidence Limits for Binomial Proportions—Brenner & Quan Revisited , 1992 .

[24]  T. E. Sterne,et al.  Some remarks on confidence or fiducial limits , 1954 .

[25]  Seung-Chun Lee Interval estimation of binomial proportions based on weighted Polya posterior , 2006, Comput. Stat. Data Anal..

[26]  Kishor S. Trivedi,et al.  A COMPARISON OF APPROXIMATE INTERVAL ESTIMATORS FOR THE BERNOULLI PARAMETER , 1993 .

[27]  D. Michael THE EVALUATION OF CONFIDENCE SETS WITH APPLICATION TO BINOMIAL INTERVALS , 1998 .

[28]  C. Blyth Approximate Binomial Confidence Limits , 1986 .

[29]  J. S. Urban Hjorth,et al.  Computer Intensive Statistical Methods: Validation, Model Selection, and Bootstrap , 1993 .

[30]  W. Stevens,et al.  Fiducial limits of the parameter of a discontinuous distribution. , 1950, Biometrika.

[31]  J. Angus,et al.  Improved Confidence Statements for the Binomial Parameter , 1984 .

[32]  Edwin L. Crow,et al.  CONFIDENCE INTERVALS FOR A PROPORTION , 1956 .

[33]  E. B. Wilson Probable Inference, the Law of Succession, and Statistical Inference , 1927 .

[34]  K. Krishnamoorthy,et al.  A simple improved inferential method for some discrete distributions , 2005, Comput. Stat. Data Anal..

[35]  Wei Pan,et al.  Approximate confidence intervals for one proportion and difference of two proportions , 2002 .

[36]  M. García-Pérez On the Confidence Interval for the Binomial Parameter , 2005 .

[37]  P. Armitage,et al.  Statistical methods in medical research. , 1972 .