Compendium of Parameterized Problems at Higher Levels of the Polynomial Hierarchy

We present a list of parameterized problems together with a complexity classification of whether they allow a fixed-parameter tractable reduction to SAT or not. These problems are parameterized versions of problems whose complexity lies at the second level of the Polynomial Hierarchy or higher.

[1]  Stefan Szeider,et al.  Fixed-Parameter Tractable Reductions to SAT , 2014, SAT.

[2]  Lane A. Hemaspaandra,et al.  SIGACT news complexity theory comun 37 , 2002, SIGA.

[3]  Jim Kadin The Polynomial Time Hierarchy Collapses if the Boolean Hierarchy Collapses , 1988, SIAM J. Comput..

[4]  Dimitrios M. Thilikos,et al.  Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..

[5]  Inês Lynce,et al.  Towards efficient MUS extraction , 2012, AI Commun..

[6]  Mikolás Janota,et al.  Minimal Sets over Monotone Predicates in Boolean Formulae , 2013, CAV.

[7]  Marco Cesati,et al.  Compendium of Parameterized Problems , 2006 .

[8]  Hubie Chen,et al.  Quantified Constraint Satisfaction and Bounded Treewidth , 2004, ECAI.

[9]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[10]  Ronald de Haan Parameterized Complexity Results for the Kemeny Rule in Judgment Aggregation , 2016, ECAI.

[11]  Stefan Szeider,et al.  The Parameterized Complexity of Reasoning Problems Beyond NP , 2013, KR.

[12]  Miroslaw Truszczynski,et al.  Answer set programming at a glance , 2011, Commun. ACM.

[13]  Edwin P. D. Pednault,et al.  ADL: Exploring the Middle Ground Between STRIPS and the Situation Calculus , 1989, KR.

[14]  Steven David Prestwich,et al.  CNF Encodings , 2021, Handbook of Satisfiability.

[15]  Christel Baier,et al.  Principles of model checking , 2008 .

[16]  Ronald Fagin,et al.  The Closure of Monadic NP , 2000, J. Comput. Syst. Sci..

[17]  Ronald de Haan An Overview of Non-Uniform Parameterized Complexity , 2015, Electron. Colloquium Comput. Complex..

[18]  Stefan Szeider,et al.  Machine Characterizations for Parameterized Complexity Classes Beyond Para-NP , 2015, SOFSEM.

[19]  Richard Chang,et al.  The Boolean Hierarchy and the Polynomial Hierarchy: A Closer Connection , 1996, SIAM J. Comput..

[20]  Celia Wrathall,et al.  Complete Sets and the Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[21]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[22]  Klaus Nehring,et al.  The structure of strategy-proof social choice - Part I: General characterization and possibility results on median spaces , 2007, J. Econ. Theory.

[23]  Christos H. Papadimitriou,et al.  Approximability and completeness in the polynomial hierarchy , 2000 .

[24]  Armin Biere,et al.  Bounded model checking , 2003, Adv. Comput..

[25]  Ulrich Endriss,et al.  Complexity of Judgment Aggregation , 2012, J. Artif. Intell. Res..

[26]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[27]  Georg Gottlob,et al.  The Complexity of Logic-Based Abduction , 1993, STACS.

[28]  Hugo Krawczyk,et al.  On the Composition of Zero-Knowledge Proof Systems , 1990, ICALP.

[29]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[30]  Samuel R. Buss,et al.  On Truth-Table Reducibility to SAT , 1991, Inf. Comput..

[31]  Georg Gottlob,et al.  Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence Robust Constraint Satisfaction and Local Hidden Variables in Quantum Mechanics , 2022 .

[32]  Armin Biere,et al.  Resolve and Expand , 2004, SAT.

[33]  Victor W. Marek,et al.  Stable models and an alternative logic programming paradigm , 1998, The Logic Programming Paradigm.

[34]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[35]  Stefan Szeider,et al.  Parameterized Complexity Results for Symbolic Model Checking of Temporal Logics , 2016, KR.

[36]  Stefan Rümmele,et al.  Backdoors to Abduction , 2013, IJCAI.

[37]  Armin Biere,et al.  Symbolic Model Checking without BDDs , 1999, TACAS.

[38]  G. S. Tseitin On the Complexity of Derivation in Propositional Calculus , 1983 .

[39]  Jörg Flum,et al.  Describing parameterized complexity classes , 2003, Inf. Comput..

[40]  M. Schaefer,et al.  Completeness in the Polynomial-Time Hierarchy A Compendium ∗ , 2008 .

[41]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[42]  Moshe Y. Vardi Boolean satisfiability , 2014, Commun. ACM.

[43]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[44]  Ronald de Haan,et al.  Fixed-Parameter Tractable Reductions to SAT for Planning , 2015, IJCAI.

[45]  Stefan Woltran,et al.  Complexity-sensitive decision procedures for abstract argumentation , 2012, Artif. Intell..

[46]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[47]  Bernhard Nebel,et al.  COMPLEXITY RESULTS FOR SAS+ PLANNING , 1995, Comput. Intell..

[48]  L. Hemachandra The strong exponential hierarchy collapses , 1987, STOC 1987.

[49]  Stefan Szeider,et al.  Backdoors to Normality for Disjunctive Logic Programs , 2013, AAAI.

[50]  Phokion G. Kolaitis,et al.  Closures and dichotomies for quantified constraints , 2006, Electron. Colloquium Comput. Complex..

[51]  Stefan Szeider,et al.  Parameterized Complexity Results for Agenda Safety in Judgment Aggregation , 2015, AAMAS.

[52]  Edmund M. Clarke,et al.  Model Checking , 1999, Handbook of Automated Reasoning.

[53]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[54]  Georg Gottlob,et al.  On minimal constraint networks , 2011, Artif. Intell..

[55]  David A. Basin,et al.  QUBOS: Deciding Quantified Boolean Logic Using Propositional Satisfiability Solvers , 2002, FMCAD.

[56]  Michael Gelfond,et al.  Classical negation in logic programs and disjunctive databases , 1991, New Generation Computing.

[57]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[58]  Juris Hartmanis,et al.  The Boolean Hierarchy I: Structural Properties , 1988, SIAM J. Comput..

[59]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .