Bayesian Methods for Updating Dynamic Models

Model updating of dynamical systems has been attracting much attention because it has a very wide range of applications in aerospace, civil, and mechanical engineering, etc. Many methods were developed and there has been substantial development in Bayesian methods for this purpose in the recent decade. This article introduces some state-of-the-art work. It consists of two main streams of model updating, namely model updating using response time history and model updating using modal measurements. The former one utilizes directly response time histories for the identification of uncertain parameters. In particular, the Bayesian time-domain approach, Bayesian spectral density approach and Bayesian fast Fourier transform approach will be introduced. The latter stream utilizes modal measurements of a dynamical system. The method introduced here does not require a mode matching process that is common in other existing methods. Afterwards, discussion will be given about the relationship among model complexity, data fitting capability and robustness. An application of a 22-story building will be presented. Its acceleration response time histories were recorded during a severe typhoon and they are utilized to identify the fundamental frequency of the building. Furthermore, three methods are used for analysis on this same set of measurements and comparison will be made.

[1]  Rune Brincker,et al.  Application of Vector Triggering Random Decrement , 1996 .

[2]  James L. Beck,et al.  Two-Stage Structural Health Monitoring Approach for Phase I Benchmark Studies , 2004 .

[3]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[4]  Thambirajah Balendra,et al.  Determination of storey stiffness of three-dimensional frame buildings , 1995 .

[5]  Ka-Veng Yuen,et al.  Recent developments of Bayesian model class selection and applications in civil engineering , 2010 .

[6]  Ka-Veng Yuen,et al.  Peak Ground Acceleration Estimation by Linear and Nonlinear Models with Reduced Order Monte Carlo Simulation , 2010, Comput. Aided Civ. Infrastructure Eng..

[7]  H. G. Natke Updating computational models in the frequency domain based on measured data: a survey , 1988 .

[8]  Nicholas P. Jones,et al.  SIMULTANEOUS ESTIMATION OF SYSTEM AND INPUT PARAMETERS FROM OUTPUT MEASUREMENTS , 2000 .

[9]  K. Cetin,et al.  CPT-Based Probabilistic Soil Characterization and Classification , 2009 .

[10]  Costas Papadimitriou,et al.  Optimal sensor placement methodology for parametric identification of structural systems , 2004 .

[11]  K. Yuen Bayesian Methods for Structural Dynamics and Civil Engineering , 2010 .

[12]  Ka-Veng Yuen,et al.  Bayesian Probabilistic Approach for the Correlations of Compression Index for Marine Clays , 2009 .

[13]  C. Papadimitriou,et al.  A probabilistic approach to structural model updating , 1998 .

[14]  P. Krishnaiah,et al.  Some recent developments on complex multivariate distributions , 1976 .

[15]  James L. Beck,et al.  Reliability‐based robust control for uncertain dynamical systems using feedback of incomplete noisy response measurements , 2003 .

[16]  Costas Papadimitriou,et al.  A Bayesian methodology for crack identification in structures using strain measurements , 2010 .

[17]  E. T. Jaynes,et al.  BAYESIAN METHODS: GENERAL BACKGROUND ? An Introductory Tutorial , 1986 .

[18]  David A. Nix,et al.  Vibration–based structural damage identification , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  You-Lin Xu,et al.  Modal identification of Di Wang Building under Typhoon York using the Hilbert–Huang transform method , 2003 .

[20]  Paolo Gardoni,et al.  A Probabilistic Framework for Bayesian Adaptive Forecasting of Project Progress , 2007, Comput. Aided Civ. Infrastructure Eng..

[21]  James L. Beck,et al.  Updating Properties of Nonlinear Dynamical Systems with Uncertain Input , 2003 .

[22]  R. T. Cox The Algebra of Probable Inference , 1962 .

[23]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[24]  Michael Feldman,et al.  Non-linear system vibration analysis using Hilbert transform--I. Free vibration analysis method 'Freevib' , 1994 .

[25]  Ahsan Kareem,et al.  Validating wind-induced response of tall buildings : Synopsis of the chicago full-scale monitoring program , 2006 .

[26]  C. A. Tan,et al.  Non-linear system identification based on Lie series solutions , 2005 .

[27]  Lambros S. Katafygiotis,et al.  Unified Probabilistic Approach for Model Updating and Damage , 2006 .

[28]  Theodore Stathopoulos,et al.  Wind-induced interference effects on buildings : a review of the state-of-the-art , 1998 .

[29]  Alex Berman,et al.  Mass Matrix Correction Using an Incomplete Set of Measured Modes , 1979 .

[30]  Rustem V. Shaikhutdinov,et al.  Bayesian State Estimation Method for Nonlinear Systems and Its Application to Recorded Seismic Response , 2006 .

[31]  Linda Simo Mthembu,et al.  FINITE ELEMENT MODEL UPDATING , 2013 .

[32]  Lambros S. Katafygiotis,et al.  Substructure Identification and Health Monitoring Using Noisy Response Measurements Only , 2006, Comput. Aided Civ. Infrastructure Eng..

[33]  Ka-Veng Yuen,et al.  Selection of noise parameters for Kalman filter , 2007 .

[34]  James L. Beck,et al.  Structural protection using MR dampers with clipped robust reliability-based control , 2007 .

[35]  P. Eykhoff System Identification Parameter and State Estimation , 1974 .

[36]  Richard W. Longman,et al.  Identification of linear structural systems using earthquake‐induced vibration data , 1999 .

[37]  L. M. See,et al.  Estimation of structural parameters in time domain: A substructure approach , 1991 .

[38]  J. Ching,et al.  Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging , 2007 .

[39]  J. Beck,et al.  Entropy-Based Optimal Sensor Location for Structural Model Updating , 2000 .

[40]  François M. Hemez,et al.  AND ASSESSMENT OF MODEL UPDATING FOR NONLINEAR , TRANSIENT DYNAMICS , 1999 .

[41]  Lambros S. Katafygiotis,et al.  Bayesian Fast Fourier Transform Approach for Modal Updating Using Ambient Data , 2003 .

[42]  Lambros S. Katafygiotis,et al.  Probabilistic approach for modal identification using non‐stationary noisy response measurements only , 2002 .

[43]  J. Beck,et al.  Updating Models and Their Uncertainties. I: Bayesian Statistical Framework , 1998 .

[44]  M. Hoshiya,et al.  Structural Identification by Extended Kalman Filter , 1984 .

[45]  S. T. Mau,et al.  Systems Identification of Degrading Hysteretic Restoring Forces , 1988 .

[46]  Masoud Sanayei,et al.  PARAMETER ESTIMATION INCORPORATING MODAL DATA AND BOUNDARY CONDITIONS , 1999 .

[47]  Julian F Dunne,et al.  A spectral method for estimation of non-linear system parameters from measured response , 1995 .

[48]  Sankaran Mahadevan,et al.  Bayesian wavelet packet denoising for structural system identification , 2007 .

[49]  Hoon Sohn,et al.  A Review of Structural Health Review of Structural Health Monitoring Literature 1996-2001. , 2002 .

[50]  Qiusheng Li,et al.  Structural parameter identification and damage detection for a steel structure using a two-stage finite element model updating method , 2006 .

[51]  Lambros S. Katafygiotis,et al.  Bayesian time–domain approach for modal updating using ambient data , 2001 .

[52]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[53]  Jer-Nan Juang,et al.  An Eigensystem Realization Algorithm in Frequency Domain for modal parameter identification , 1986 .

[54]  Alaa Chateauneuf,et al.  Information-based formulation for Bayesian updating of the Eurocode 2 creep model , 2009 .

[55]  Harold H. Doiron,et al.  Free-decay time-domain modal identification for large space structures , 1992 .

[56]  C. Papadimitriou,et al.  Structural model updating and prediction variability using Pareto optimal models , 2008 .

[57]  Charles R. Farrar,et al.  An overview of modal-based damage identification methods , 1997 .

[58]  Gregory D. Buckner,et al.  An intelligent parameter varying (IPV) approach for non-linear system identification of base excited structures , 2004 .

[59]  H. Ishizaki,et al.  Wind profiles, turbulence intensities and gust factors for design in typhoon-prone regions , 1983 .

[60]  Keith Worden,et al.  Fatigue life prediction of sandwich composite materials under flexural tests using a Bayesian trained artificial neural network , 2007 .

[61]  James L. Beck,et al.  New Bayesian Model Updating Algorithm Applied to a Structural Health Monitoring Benchmark , 2004 .

[62]  Raimondo Betti,et al.  A parametric identification scheme for non‐deteriorating and deteriorating non‐linear hysteretic behaviour , 2006 .

[63]  P. Young An instrumental variable method for real-time identification of a noisy process , 1970 .

[64]  Costas Papadimitriou,et al.  EFFECTS OF STRUCTURAL UNCERTAINTIES ON TMD DESIGN: A RELIABILITY-BASED APPROACH , 1997 .

[65]  S. Gull Bayesian Inductive Inference and Maximum Entropy , 1988 .

[66]  R. T. Cox,et al.  The Algebra of Probable Inference , 1962 .

[67]  J. D. Holmes,et al.  Wind Loading of Structures , 2001 .

[68]  Keith Worden,et al.  An evidence-based approach to damage location on an aircraft structure , 2009 .

[69]  J. Beck,et al.  Spectral density estimation of stochastic vector processes , 2002 .

[70]  James L. Beck,et al.  Determining models of structures from earthquake records , 1978 .

[71]  F. Hemez,et al.  Updating finite element dynamic models using an element-by-element sensitivity methodology , 1993 .

[72]  Costas Papadimitriou,et al.  Fatigue predictions in entire body of metallic structures from a limited number of vibration sensors using Kalman filtering , 2011 .

[73]  S. Sarkani,et al.  Stochastic analysis of structural and mechanical vibrations , 1996 .

[74]  Richard W. Longman,et al.  Obtaining refined first‐order predictive models of linear structural systems , 2002 .

[75]  Y. Kitada Identification of Nonlinear Structural Dynamic Systems Using Wavelets , 1998 .

[76]  Joel W. Burdick,et al.  A Bayesian Clustering Method for Tracking Neural Signals Over Successive Intervals , 2009, IEEE Transactions on Biomedical Engineering.

[77]  Mark J. L. Orr,et al.  Regularization in the Selection of Radial Basis Function Centers , 1995, Neural Computation.

[78]  Andrew W. Smyth,et al.  Surveillance of Mechanical Systems on the Basis of Vibration Signature Analysis , 2000 .

[79]  W. Gersch,et al.  Structural System Parameter Estimation by Two-Stage Least Squares Method , 1976 .

[80]  Erik A. Johnson,et al.  NATURAL EXCITATION TECHNIQUE AND EIGENSYSTEM REALIZATION ALGORITHM FOR PHASE I OF THE IASC-ASCE BENCHMARK PROBLEM: SIMULATED DATA , 2004 .

[81]  C. S. Manohar,et al.  Reliability models for existing structures based on dynamic state estimation and data based asymptotic extreme value analysis , 2010 .

[82]  Ka-Veng Yuen,et al.  Prediction of daily averaged PM10 concentrations by statistical time-varying model , 2009 .

[83]  J. Y. Fu,et al.  Typhoon effects on super-tall buildings , 2008 .

[84]  Chan Ghee Koh,et al.  A hybrid computational strategy for identification of structural parameters , 2003 .

[85]  Jonathan E. Cooper,et al.  Higher-order spectra for identification of nonlinear modal coupling , 2009 .

[86]  Costas Papadimitriou,et al.  Bridge health monitoring system based on vibration measurements , 2008 .

[87]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .

[88]  Keith Worden,et al.  Uncertainty analysis of a neural network used for fatigue lifetime prediction , 2008 .

[89]  Lambros S. Katafygiotis,et al.  Bayesian spectral density approach for modal updating using ambient data , 2001 .

[90]  Erik A. Johnson,et al.  Phase I IASC-ASCE Structural Health Monitoring Benchmark Problem Using Simulated Data , 2004 .

[91]  Zhang Yigong,et al.  Nonlinear structural identification using extended kalman filter , 1994 .

[92]  Tao Yin,et al.  Statistical detection of multiple cracks on thin plates utilizing dynamic response , 2010 .

[93]  David Polidori,et al.  Determination of Modal Parameters from Ambient Vibration Data for Structural Health Monitoring , 1994 .

[94]  Lennart Ljung,et al.  On global identifiability for arbitrary model parametrizations , 1994, Autom..

[95]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[96]  Hoon Sohn,et al.  Bayesian probabilistic damage detection of a reinforced-concrete bridge column , 2000 .

[97]  Chung Bang Yun,et al.  Substructural identification for damage estimation of structures , 1997 .

[98]  J. Beck,et al.  UPDATING MODELS AND THEIR UNCERTAINTIES. II: MODEL IDENTIFIABILITY. TECHNICAL NOTE , 1998 .

[99]  Hoon Sohn,et al.  A Bayesian Probabilistic Approach for Structure Damage Detection , 1997 .

[100]  Jie Zhang,et al.  Bayesian Framework for Characterizing Geotechnical Model Uncertainty , 2009 .

[101]  John E. Mottershead,et al.  Model Updating In Structural Dynamics: A Survey , 1993 .

[102]  Keith Worden Damage detection using a novelty measure , 1997 .

[103]  Heung-Fai Lam,et al.  Optimal sensor configuration of a typical transmission tower for the purpose of structural model updating , 2011 .

[104]  Charles R. Farrar,et al.  A summary review of vibration-based damage identification methods , 1998 .

[105]  Randall J. Allemang,et al.  THE MODAL ASSURANCE CRITERION–TWENTY YEARS OF USE AND ABUSE , 2003 .

[106]  Hejun Du,et al.  A new complex inverse eigensensitivity method for structural damping model identification , 1994 .

[107]  Raimondo Betti,et al.  On‐line identification and damage detection in non‐linear structural systems using a variable forgetting factor approach , 2004 .

[108]  Thomas T. Baber,et al.  Random Vibration Hysteretic, Degrading Systems , 1981 .

[109]  B. Peeters,et al.  Stochastic System Identification for Operational Modal Analysis: A Review , 2001 .

[110]  James L. Beck,et al.  Structural Health Monitoring via Measured Ritz Vectors Utilizing Artificial Neural Networks , 2006, Comput. Aided Civ. Infrastructure Eng..

[111]  Takafumi Noguchi,et al.  Bayesian Statistical Framework to Construct Probabilistic Models for the Elastic Modulus of Concrete , 2007 .

[112]  R. Ghanem,et al.  Structural-System Identification. I: Theory , 1995 .

[113]  James L. Beck,et al.  Monitoring Structural Health Using a Probabilistic Measure , 2001 .

[114]  Maria Q. Feng,et al.  Bridge Structural Condition Assessment Based on Vibration and Traffic Monitoring , 2009 .

[115]  A. Kabe Stiffness matrix adjustment using mode data , 1985 .

[116]  James L. Beck,et al.  Near‐real‐time loss estimation for instrumented buildings , 2003 .

[117]  Keith Worden,et al.  Structural fault diagnosis and isolation using neural networks based on response-only data , 2003 .

[118]  H. Jeffreys,et al.  Theory of probability , 1896 .

[119]  Kevin R. Cooper,et al.  Comparison of model and full-scale accelerations of a high-rise building , 1983 .

[120]  Keith Worden,et al.  STRUCTURAL FAULT DETECTION USING A NOVELTY MEASURE , 1997 .

[121]  Lambros S. Katafygiotis,et al.  Efficient model updating and health monitoring methodology using incomplete modal data without mode matching , 2006 .

[122]  R. B. Testa,et al.  Modal Analysis for Damage Detection in Structures , 1991 .

[123]  Yu-Kweng Michael Lin Probabilistic Theory of Structural Dynamics , 1976 .

[124]  Joel P. Conte,et al.  Statistical System Identification of Structures Using ARMA Models , 1993 .

[125]  Ka-Veng Yuen,et al.  Ambient interference in long-term monitoring of buildings , 2010 .

[126]  Ka-Veng Yuen,et al.  On the complexity of artificial neural networks for smart structures monitoring , 2006 .

[127]  Y. Tamura,et al.  Evaluation of amplitude-dependent damping and natural frequency of buildings during strong winds , 1996 .

[128]  Nesrin Sarigul-Klijn,et al.  A review of uncertainty in flight vehicle structural damage monitoring, diagnosis and control: Challenges and opportunities , 2010 .

[129]  M. D. Trifunac,et al.  Ambient Vibration Tests of Structures−a Review , 2001 .

[130]  Ka-Veng Yuen,et al.  Modeling of environmental influence in structural health assessment for reinforced concrete buildings , 2010 .

[131]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[132]  J. Beck,et al.  Asymptotic Expansions for Reliability and Moments of Uncertain Systems , 1997 .

[133]  Lambros S. Katafygiotis,et al.  Model updating using noisy response measurements without knowledge of the input spectrum , 2005 .

[134]  Franco Bontempi,et al.  Structural integrity monitoring for dependability , 2011 .

[135]  Pan Warsaw,et al.  STRUCTURAL HEALTH MONITORING - A REVIEW WITH THE EMPHASIS ON LOW-FREQUENCY METHODS , 2007 .

[136]  Fatemeh Jalayer,et al.  Structural modeling uncertainties and their influence on seismic assessment of existing RC structures , 2010 .

[137]  E. T. Jaynes,et al.  Where do we Stand on Maximum Entropy , 1979 .

[138]  H. G. Natke,et al.  System identification techniques , 1986 .

[139]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[140]  Alison B. Flatau,et al.  Review Paper: Health Monitoring of Civil Infrastructure , 2003 .

[141]  Wenping Wang,et al.  System identification of linear MDOF structures under ambient excitation , 1999 .

[142]  Chan Ghee Koh,et al.  Numerical and Experimental Studies of a Substructural Identification Strategy , 2009 .

[143]  Arnold Zellner,et al.  Simplicity, Inference and Modelling: Keeping it Sophisticatedly Simple , 2009 .

[144]  James L. Beck,et al.  Bayesian Updating and Model Class Selection for Hysteretic Structural Models Using Stochastic Simulation , 2008 .

[145]  J. Beck,et al.  Real-Time Estimation of Fault Rupture Extent Using Near-Source versus Far-Source Classification , 2007 .

[146]  David L. Brown,et al.  Parameter Estimation Techniques for Modal Analysis , 1979 .

[147]  F. Hemez,et al.  REVIEW AND ASSESSMENT OF MODEL UPDATING FOR NON-LINEAR, TRANSIENT DYNAMICS , 2001 .

[148]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[149]  C. Papadimitriou Pareto optimal sensor locations for structural identification , 2005 .

[150]  Costas Papadimitriou,et al.  Optimal Sensor Placement Methodology for Identification with Unmeasured Excitation , 2001 .

[151]  George E. P. Box,et al.  Bayesian Inference in Statistical Analysis: Box/Bayesian , 1992 .

[152]  D. Bernal Load Vectors for Damage Localization , 2002 .

[153]  A. K. Pandey,et al.  Experimental verification of flexibility difference method for locating damage in structures , 1995 .

[154]  Raimondo Betti,et al.  Identification of Linear Structural Systems With a Limited Set of Input-Output Measurements , 2009 .

[155]  C. Koh,et al.  Substructural Identification Method without Interface Measurement , 2003 .

[156]  Christian Bucher,et al.  On model updating of existing structures utilizing measured dynamic responses , 2005 .

[157]  J. Beck,et al.  Model Selection using Response Measurements: Bayesian Probabilistic Approach , 2004 .

[158]  Maria Q. Feng,et al.  Structural Reliability Estimation with Vibration-Based Identified Parameters , 2010 .

[159]  James M. W. Brownjohn,et al.  Ambient vibration studies for system identification of tall buildings , 2003 .

[160]  P. Spanos,et al.  SPECTRAL IDENTIFICATION OF NONLINEAR STRUCTURAL SYSTEMS , 1998 .

[161]  James L. Beck,et al.  Statistical System Identification of Structures , 1989 .

[162]  Daniel Straub,et al.  Stochastic Modeling of Deterioration Processes through Dynamic Bayesian Networks , 2009 .

[163]  Guido De Roeck,et al.  STRUCTURAL DAMAGE IDENTIFICATION USING MODAL DATA. II: TEST VERIFICATION , 2002 .

[164]  Ka-Veng Yuen,et al.  Efficient Model Correction Method with Modal Measurement , 2010 .

[165]  Daniel Coca,et al.  Non-linear system identification using wavelet multiresolution models , 2001 .

[166]  Massimo Ruzzene,et al.  Bayesian estimation of a dynamic structure's response , 2010 .

[167]  J. Beck,et al.  Bayesian Model Updating Using Hybrid Monte Carlo Simulation with Application to Structural Dynamic Models with Many Uncertain Parameters , 2009 .

[168]  Y. Wen Equivalent Linearization for Hysteretic Systems Under Random Excitation , 1980 .

[169]  Lambros S. Katafygiotis,et al.  Bayesian modal updating using complete input and incomplete response noisy measurements , 2002 .

[170]  Michael P. Enright,et al.  Condition Prediction of Deteriorating Concrete Bridges Using Bayesian Updating , 1999 .

[171]  K. Worden,et al.  Past, present and future of nonlinear system identification in structural dynamics , 2006 .

[172]  You-Lin Xu,et al.  On modelling of typhoon‐induced non‐stationary wind speed for tall buildings , 2004 .

[173]  Dan M. Frangopol,et al.  Updating Reliability of Steel Miter Gates on Locks and Dams Using Visual Inspection Results , 2004 .

[174]  Joseph C. S. Lai,et al.  ARMAX modal parameter identification in the presence of unmeasured excitation—I: Theoretical background , 2007 .

[175]  Fu-Shang Wei,et al.  Analytical dynamic model improvement using vibration test data , 1990 .